matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungGeigerzähler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Geigerzähler
Geigerzähler < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geigerzähler: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 19:27 Mi 25.05.2016
Autor: MiguelVal

Aufgabe
Eine Probe Uran 238 enthält 10^21 Atome (ca. 0,4 Gramm). Die Wahrscheinlichkeit, dass ein bestimmtes
Atom innerhalb einer bestimmten Sekunde zerfällt beträgt 4,92 x 10^-18. Ein Geigerzähler ist auf die
Probe gerichtet und so eingestellt, dass er einen Zerfall in der Probe mit einer Wahrscheinlichkeit von
0,1% detektiert. Wie hoch ist die Wahrscheinlichkeit, dass in einer Sekunde genau vier Zerfallsprozesse detektiert werden?

Ich wollte versuchen die Aufgabe mittels der Poisson-Verteilung zu lösen.
P (k) = [mm] exp(-\lambda) \* \lambda^k/k! [/mm]

Dann wollte ich für k = 4000 die Wahrscheinlichkeit berechnen, da ja lediglich 1/1000 der Zerfälle detektiert werden.
Nun komme ich aber bei der Bestimmung von [mm] \lambda [/mm] nicht weiter. Ich habe [mm] \lambda [/mm] = n x p = 10^23 [mm] \* [/mm] 4,92 [mm] \* [/mm] 10^-18 = 4920.
Damit komme ich aber nicht weiter, da riesige Zahlen entstehen...
Bin mir auch insgesamt unsicher ob die Vorgehensweise korrekt ist?

        
Bezug
Geigerzähler: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mi 25.05.2016
Autor: HJKweseleit

Wenn du einfach für die erste Sekunde alles mit den angegebenen Zahlen durchrechnest,kommst du auf 49,2 "Knackser". Du hast 1 % vergessen. Jetzt Poissonverteilung!
Bezug
                
Bezug
Geigerzähler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Do 26.05.2016
Autor: MiguelVal

Kann ich folgendermaßen vorgehen:

Die Wahrscheinlichkeit, dass ein Atom zerfällt und dieser Zerfall detektiert wird als p = 4,92 * 10^-18 * 0,001 = 4.92 * [mm] 10^{-21} [/mm] angenommen.
Beide Ereignisse sind ja unabhängig voneinander.

Dies ergibt für [mm] \lambda [/mm] = n*p = 4,92.

daraus folgt:
P (k=4) = [mm] exp(-\lambda) [/mm] * [mm] \lambda^{4}/4! [/mm] = exp(-4,92) * [mm] 4,92^{4}/4! [/mm] = 0,178 = 17,8%

Bezug
                        
Bezug
Geigerzähler: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Do 26.05.2016
Autor: leduart

Hallo
nein p dass ein bestimmtes Atom in 1s  den GM Zähler kommt ist doch [mm] 4.92*10^{-18}/1000. [/mm]
fang damit an.
Gruß ledum

Bezug
                                
Bezug
Geigerzähler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Do 26.05.2016
Autor: MiguelVal

p = 4,92 [mm] \* 10^{-18} \* [/mm] 0,001 = 4,92 [mm] \* 10^{-18}/1000, [/mm] oder? So habe ich es doch gemacht.

Bezug
                                        
Bezug
Geigerzähler: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Do 26.05.2016
Autor: leduart

Hallo
ich hatte auf den post davor geantwortet, ja du hast recht.
Gruß leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]