matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGegenseitige Lage von Geraden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Gegenseitige Lage von Geraden
Gegenseitige Lage von Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gegenseitige Lage von Geraden: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:59 So 12.11.2006
Autor: night

Aufgabe
Die Gerade mit der Gleichung [mm] \vec{x} [/mm] = [mm] \vec{p} [/mm] + [mm] t\vec{u} [/mm] geht nicht durch den Ursprung. 0 (0|0|0)

Zeigen Sie, dass sich dann die Geraden g und h schneiden. Geben Sie den Ortsvektor des Schnittpunktes an.

a) [mm] \vec{x} [/mm] = [mm] \vec{p} [/mm] + [mm] t\vec{u} [/mm]

hi
.....kann mir vielleicht jemand einen Ansatz zu dieser Aufgabe geben?
Komme leider nicht weiter
Die Geraden gleichsetzen?
Muss man ein Gleichungssystem auflösen?
Auf eine Parametergleichung?

hoffe ihr könnt mir helfen,
vielen Dank

Gruß Daniel


        
Bezug
Gegenseitige Lage von Geraden: Nachfrage
Status: (Antwort) fertig Status 
Datum: 18:23 So 12.11.2006
Autor: informix

Hallo night,

> Die Gerade mit der Gleichung [mm]\vec{x}[/mm] = [mm]\vec{p}[/mm] + [mm]t\vec{u}[/mm]
> geht nicht durch den Ursprung. 0 (0|0|0)
>  
> Zeigen Sie, dass sich dann die Geraden g und h schneiden.
> Geben Sie den Ortsvektor des Schnittpunktes an.

Verrätst du uns die Gleichungen von g und h?

>  
> a) [mm]\vec{x}[/mm] = [mm]\vec{p}[/mm] + [mm]t\vec{u}[/mm]
>  hi
>  .....kann mir vielleicht jemand einen Ansatz zu dieser
> Aufgabe geben?
>  Komme leider nicht weiter
>  Die Geraden gleichsetzen? [ok]
>  Muss man ein Gleichungssystem auflösen? [ok]
>  Auf eine Parametergleichung? [verwirrt]
>  
> hoffe ihr könnt mir helfen,
>  vielen Dank

mit so wenigen Angaben leider nicht ... ;-)


Gruß informix

Bezug
                
Bezug
Gegenseitige Lage von Geraden: Gerade h
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:16 So 12.11.2006
Autor: night

Hallo, hab die Gleichung der Geraden h übersehen.

h: [mm] \vec{x} [/mm] =2* [mm] \vec{p} [/mm] + [mm] \vec{u} [/mm] + t * ( [mm] \vec{u} [/mm] - [mm] \vec{p} [/mm] )

Gruß Night

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]