matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenGedämpftes Newton-Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Nichtlineare Gleichungen" - Gedämpftes Newton-Verfahren
Gedämpftes Newton-Verfahren < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gedämpftes Newton-Verfahren: Inverse Matrizen bestimmen?
Status: (Frage) beantwortet Status 
Datum: 19:12 Fr 20.05.2005
Autor: cesfreaks

Hallo zusammen!

Kämpfe mich gerade mit mäßigem Erfolg durch unser Numerik-Script....

Zur Zeit hänge ich bei einer Verständnisfrage zum gedämpften Newton-Verfahren bei nichtlinearen Gleichungssystemen.
Und zwar geht mir folgendes nicht in den Kopf:
Normalerweise versucht man ja immer, das Invertieren von Matrizen zu vermeiden, da dies einen extrem hohen Aufwand bedeutet / bedeuten kann. Deshalb bildet man ja auch nicht die Inverse von [mm] f'(x^{k}), [/mm] um den Newton-Schritt zu bestimmen, sondern bestimmt diesen z.B. über eine QR-Zerl. o.ä. Das leuchtet mir soweit ja noch ein.
Führt man das Standard-Newton-Verfahren durch, kommt man damit ja auch wunderbar aus.
Beim gedämpften NV hingegen wird jedoch gerade diese Inverse von [mm] f'(x^{k}) [/mm] für das Dämpfungskriterium benötigt. (So verstehe ich zumindest das Script...) Oder etwa nicht?
Wenn das nämlich wirklich so ist, kann man ja auch gleich den Newton-Schritt über diese Inverse bestimmen.
Bzw. stellt sich mir dann die Frage: Ist das gedämpfte NV wirklich so viel besser (also schneller) als das Standard-NV? Ich kann durch das Dämpfungskriterium zwar (in besonders günstigen Fällen) ein paar Iterationen überspringen, muss dafür aber eine Inverse Matrix bestimmen.

Ich hoffe, ich konnte das halbswegs verständlich erklären...
Falls nicht, fragt einfach nochmal nach!

Vielen Dank im Voraus und schöne Grüße!
Andreas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gedämpftes Newton-Verfahren: Globalisierung
Status: (Antwort) fertig Status 
Datum: 00:01 So 22.05.2005
Autor: mathemaduenn

Hallo Andreas,
Die Berechnung der Inversen ist beim gedämpften Newtonverfahren nicht nötig. Es geht auch nicht darum schneller zu sein sondern Konvergenz zu erreichen auch wenn man weiter weg von der Nullstelle ist. Du kannst ja nochmal die Stelle posten wo Du nicht weiterkommst.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]