matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikGedämpfte Schwingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Gedämpfte Schwingung
Gedämpfte Schwingung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gedämpfte Schwingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 02.11.2010
Autor: Kuriger

Aufgabe
DieWaagschale der Masse 150 g einer Federwaage wird pl¨otzlich mit einer Masse
von 200 g belastet. Das System wird dadurch in eine Schwingung versetzt.
Die Federkonstante ist 1 N/cm. Durch die D¨ampfung klingt die Amplitude der
Schwingung nach drei vollen Schwingungen auf einen Zehntel des Anfangswertes
ab. Beschreiben Sie die Bewegung. Welche Schwingungsdauer stellt sich ein
? Wie großist der erste Ausschlag ?



Servus

Also wenn nur die Waagschale auf der Federwaage ist, so müsste das System im Gleichgewicht sein (also Schwingungsfrei). Stelle ich nun eine Masse von 200g auf die Waage, so gerät das System in Schwingung.

In einem anderen Post habe ich bereits die Allgemeine DGL einer gedämpften Schwingung definiert, gibt ja verschiedene:

m * [mm] \ddot{x} [/mm] = -D*x - k * [mm] \dot{x} [/mm]
m * [mm] \ddot{x} [/mm] = -D*x - b * [mm] \dot{x} [/mm]
m * [mm] \ddot [/mm] x = - [mm] R\dot [/mm] x +- Dx = 0

Habe ich da Auswahl?

Also ich persönlich hätte das wie folgt definiert:
m: Masse der Waagschale
[mm] m_0: [/mm] Die 200g


(m + [mm] m_0) [/mm] * [mm] \ddot{x} [/mm] = -c*(y + [mm] y_0) [/mm] - k * [mm] \dot{x} [/mm]
Es fragt sich nur noch ob denn y = [mm] y_0 [/mm] ist, kann ja nicht sein, dass die Waagschale nicht gleichviel zusammengedrückt wird wie die Masse darauf, also
(m + [mm] m_0) [/mm] * [mm] \ddot{x} [/mm] = -c*y - k * [mm] \dot{x} [/mm]
(m + [mm] m_0) [/mm] * [mm] \ddot{x} [/mm] + c*y +  k * [mm] \dot{x} [/mm] = 0
[mm] \ddot{x} [/mm] + [mm] \bruch{c*y }{m + m_0} [/mm] + [mm] \bruch{k }{m + m_0} [/mm]
Unsicher bin ich mir wegen der Gewichtskraft der Masse von 200g. Möglicherweise muss ich die noch berücksichtigen, da ja die bei der Gleichgewichtslage nicht vorhanden ist, also:

(m + [mm] m_0) [/mm] * [mm] \ddot{x} [/mm] + c*y +  k * [mm] \dot{x} -m_0 [/mm] * g= 0
[mm] \ddot{x} [/mm] + [mm] \bruch{c*y }{m + m_0} [/mm] + [mm] \bruch{k }{m + m_0} [/mm] - [mm] \bruch{m_0 * g }{m + m_0} [/mm] = 0



_________________________________________________

Doch das stimmt hinten und vorne nicht, gemäss Musterlösung:
(m + [mm] m_0) [/mm] * [mm] \ddot{x} [/mm] = [mm] g*((m_0 [/mm] + m))  [mm] -c*(y_0 [/mm] + y) - b * [mm] \dot{x} [/mm]
(m + [mm] m_0) [/mm] * [mm] \ddot{x} [/mm] = mg + [mm] m_0 [/mm] g  [mm] -c*y_0 [/mm] -cy - b * [mm] \dot{x} [/mm]
(m + [mm] m_0) [/mm] * [mm] \ddot{x} [/mm] = mg   -cy - b * [mm] \dot{x} [/mm]

[mm] \ddot{x} [/mm] + [mm] \bruch{b * \dot{x}}{m + m_0} [/mm] + [mm] \bruch{cy}{m + m_0} [/mm] = [mm] \bruch{mg}{m + m_0} [/mm]


        
Bezug
Gedämpfte Schwingung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Do 04.11.2010
Autor: leduart

Hallo
es wäre erst mal wichtig zu definieren was x und y sind. z. Bsp wo ist x=0 und wo y=0?
mit dem x und dem y in deiner Dgl. kann man sie ja gar nicht lösen.
Dann berechne den Maximalausschlag ohne Dämpfung zuerst, und daraus den mit der vorgegebenen Dämpfung.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]