matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGebrochenrationale Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Gebrochenrationale Fkt.
Gebrochenrationale Fkt. < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochenrationale Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Mo 09.03.2009
Autor: richie90

Aufgabe
Geben Sie eine gebrochenrationale Funktion an mit

c) Polstelle 3 ohne VZW
d) Nullstelle 1 und Polstelle 3 ohne VZW
e) Nullstellen 2 und 3, Polstelle 4 mit VZW
f) Nullstelle -1, Polstelle -3 mit VZW und Polstelle 4 ohne VZW

Mein Problem ist, dass ich nicht weiß, wie ich beim Finden einer passenden Funktion den VZW miteinbeziehen soll.
Also wie ich auf eine Fkt. mit genau diesem Kriterium komme.

Mit freundlichen Grüßen,

Richie

        
Bezug
Gebrochenrationale Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mo 09.03.2009
Autor: schachuzipus

Hallo  Richie,

> Geben Sie eine gebrochenrationale Funktion an mit
>  
> c) Polstelle 3 ohne VZW
>  d) Nullstelle 1 und Polstelle 3 ohne VZW
>  e) Nullstellen 2 und 3, Polstelle 4 mit VZW
>  f) Nullstelle -1, Polstelle -3 mit VZW und Polstelle 4
> ohne VZW
>  Mein Problem ist, dass ich nicht weiß, wie ich beim Finden
> einer passenden Funktion den VZW miteinbeziehen soll.
>  Also wie ich auf eine Fkt. mit genau diesem Kriterium
> komme.

Man nennt eine Nullstelle [mm] $x_0$ [/mm] des Nenner(polynom)s, die nicht gleichzeitig auch Nullstelle des Zäher(polynom)s ist, einen k-fachen Pol/eine k-fache Polstelle (auch: Pol(stelle) k-ter Ordnung), wenn du es schreiben kannst als [mm] $(x-x_0)^k$ [/mm]

Also wenn du im Nenner eine k-fache Nullstelle hast.

Ist k gerade, so liegt eine Polstelle ohne VZW vor, ist k ungerade, so gibt's einen VZW

Damit ist für $(c)$ zB. die Funktion [mm] $f(x)=\frac{1}{(x-3)^2}$ [/mm] eine mögliche Lösung ...



>  
> Mit freundlichen Grüßen,
>  
> Richie

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]