matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGebrochen rationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Gebrochen rationale Funktion
Gebrochen rationale Funktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochen rationale Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:43 Do 21.09.2006
Autor: rightway

Aufgabe
Geben sie eine gebrochenrationale Funktion an mit
a) Nullstelle 2 und 3, Polstelle mit VZW
b) Nullstelle -1, Polstelle -3 mit VZW und Polstelle 4 ohne VZW.

Hallo,
kann mir einer helfen? Ich stehe echt auf dem Schlauch! Am besten gleich noch schreiben wie man darauf kommt.

DANKE!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gebrochen rationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Do 21.09.2006
Autor: Leopold_Gast

Wenn man die gebrochenrationale Funktion in der Form

[mm]f(x) = \frac{p(x)}{q(x)}[/mm] mit Polynomen [mm]p(x),q(x)[/mm]

angibt, dann sind die Nullstellen von [mm]f[/mm] gerade die Nullstellen des Zählers [mm]p[/mm], die Polstellen von [mm]f[/mm] dagegen die Nullstellen des Nenners [mm]q[/mm] (sofern der Bruch vollständig gekürzt ist).

Und wenn ein Polynom eine Nullstelle [mm]a[/mm] hat, kann man den Linearfaktor [mm]x-a[/mm] abspalten. Die Anzahl der maximal möglichen Abspaltungen des Linearfaktors nennt man die Ordnung der Nullstelle. Das ist also nichts anderes als der Exponent von [mm]x-a[/mm]. Ist die Ordnung ungerade, so liegt bei [mm]x=a[/mm] ein Vorzeichenwechsel vor, ist die Ordnung gerade, so liegt kein Vorzeichenwechsel vor.

Beispiel:

[mm]p(x) = (x+2)^3 \cdot (x-1)^2 \cdot (x-4) \cdot \left( x^2 + 1 \right)[/mm]

Der letzte quadratische Faktor wird nicht 0, die anderen Faktoren legen die Nullstellen fest:

-2 ist Nullstelle der Ordnung 3 (ungerade), Vorzeichenwechsel
1 ist Nullstelle der Ordnung 2 (gerade), kein Vorzeichenwechsel
4 ist Nullstelle der Ordnung 1 (ungerade), Vorzeichenwechsel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]