matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikGaußsche Normalverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Gaußsche Normalverteilung
Gaußsche Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußsche Normalverteilung: Körpergröße
Status: (Frage) beantwortet Status 
Datum: 00:50 Do 20.12.2007
Autor: ernstl

Aufgabe
Für die Einwohner eines Landes wurde eine mittlere Körpergröße 1,71m ermittelt. Außerdem wurde festgestellt, dass bei 50% der Einwohner die Körpergröße um weniger als10% von dieser mittleren Körpergröße abweicht.

Die Zufallsvariable G gibt die Körpergröße eines zufällig ausgewählten Einwohners dieses Landes an.

a) welche Verteilung eignet sich gut als Näherung für die Verteilung von G? Berechne die Parameter dieser Verteilung.

Berechne aufgrund dieser Näherung:

i) V(G)
ii) P({G > 1,80})
iii) P({G < 1,50})
iv) P({1,50 < G < 1,90})
v) P({G > 2,30})

Hinweis: Für eine normal verteilte Zufallsvariable X und eine reelle, positive Konstante c gilt:
P({|X - [mm] \mu| \le [/mm] c}) = ... = 2 * "Fi" * [mm] (\bruch{c}{\delta}) [/mm] -1

Dabei bezeichnet Fi die Verteilungsfunktion der Standardnormalverteilung (s. z.B. Wertetabelle in Papula)

Hallo,

also ich bin leider schon an der a) gescheitert. Wie sieht denn diese Verteilungsfunktion aus?
Es wäre außerdem nett, wenn mir jemand zur b) vielleicht zumindest zu i) und iv) die Ergebnisse nennen kann (die anderen kann ich mir dann denke ich selber ableiten, aber wäre auch für andere Ergenisse dankbar)

Ernst

        
Bezug
Gaußsche Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:51 Do 20.12.2007
Autor: luis52

Hallo Ernst,

der Hinweis zeigt ja schon in welche Richtung es gehen soll:  G ist
normalverteilt mit gewissen Parametern [mm] $\operatorname{E}[G]=\mu=1.71$ [/mm] und
[mm] $\operatorname{Var}[G]=\sigma^2$. [/mm] Letzteren gilt es  zu
bestimmen.

Den Vorgaben und dem Hinweis entnimmt man weiter

[mm] $0.5=P(|X-\mu|<0.1\times1.71)= P(|X-\mu|\le 0.1\times1.71) =2\Phi\left(\frac{0.171}{\sigma}\right)-1$. [/mm]

Also ist [mm] $\Phi(0.171/\sigma)=0.75$. [/mm] In deiner Tabelle wirst du finden:
[mm] $0.171/\sigma=0.6745$, [/mm] also [mm] $\sigma=0.115$ [/mm] Damit haben wir a) und (b,i):
[mm] $\operatorname{Var}[G]=\sigma^2=0.115^2=0.01$. [/mm]

(b,iv):
[mm] $P(1.5
vg Luis                

Bezug
                
Bezug
Gaußsche Normalverteilung: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:00 Do 20.12.2007
Autor: ernstl

Exzellent, vielen Dank! Hab noch eine Minute bis ich zum Bus muss und kann mir heute die Punkte für die Aufgabe unverhofft doch noch mitnehmen! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]