matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungGaußalgorithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Gaußalgorithmus
Gaußalgorithmus < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußalgorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Sa 04.09.2004
Autor: DerMathematiker

Hallo Ihr,

könnt Ihr mir erzählen wie der gaußsche Algorithmus funktioniert? Ich frage nur so, weil davon hier so viel reden und ich den irgendwie nicht kenne.

MfG euer Mathematiker

        
Bezug
Gaußalgorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Sa 04.09.2004
Autor: PhiBa

Hallo Mathematiker,

der Gaußalgorithmus ist eine Methode der Linearen Algebra, um lineare Gleichungssysteme zu lösen, oder deren Unlösbarkeit zu beweisen.

Beispiel:

gegeben sei folgendes Gleichungssystem

[mm] 2 * x_1 + 3 * x_2 - 4 * x_3 = 2 1 * x_1 - 2 * x_2 + 0 * x_3 = 0 -1 * x_1 + 3 * x_2 - 1 * x_3 = -1 [/mm]

Dies wird nun in Form einer Matrix geschrieben:

[mm] \begin{pmatrix} 2 & 3 & -4 & | & 2 \\ 1 & -2 & 0 & | & 0 \\ -1 & 3 & -1 & | &-1 \end{pmatrix} [/mm]

Nun werden Vielfache der ersten Zeile zu den übrigen Zeilen addiert, um an der ersten Stelle jeweils eine 0 zu erhalten. D.h. zur zweiten Zeile wird das [mm] - \bruch{1}{2} [/mm] Fache der ersten Zeile addiert und zur dritten Zeile das [mm] \bruch{1}{2} [/mm] Fache der ersten Zeile:

[mm] \begin{pmatrix} 2 & 3 & -4 & | & 2 \\ 0 & -3,5 & 2 & | & -1 \\ 0 & 4,5 & -3 & | & 0 \end{pmatrix} [/mm]


Nun wird ein Vielfaches der zweiten Zeile zu der letzten Zeile addiert, um dort auch an der zweiten Stelle jeweils eine 0 zu erhalten. D.h. zur dritten Zeile wird das [mm] \bruch{9}{7} [/mm]
-(4,5 : (-3,5)) Fache der zweiten Zeile addiert.

[mm] \begin{pmatrix} 2 & 3 & -4 & | & 2 \\ 0 & -3,5 & 2 & | & -1 \\ 0 & 0 & - \bruch{3}{7} & | & - \bruch{9}{7} \end{pmatrix} [/mm]

Man hat also eine Matrix in Dreiecksform erhalten, die zu folgendem Gleichungssystem führt, das zum Anfangssystem äquivalent ist:

[mm] 2 * x_1 + 3 * x_2 - 4 * x_3 = 2 0 * x_1 - 3,5 * x_2 + 2 * x_3 = -1 0 * x_1 + 0 * x_2 - \bruch{3}{7} * x_3 = - \bruch{9}{7} [/mm]

Aus der dritten Zeile kann man direkt ablesen, dass x3 = 3 ist.
Daraus kann man dann mit der zweiten Zeile erkennen, das x2 = 2 ist
und dann kann man schließlich aus der ersten Zeile x1 = 4 berechnen.

Ebenso geht es mit beliebig großen Gleichungssystemem. Man muss durch schrittweises addieren von Vielfachen der Zeilen die Matrix in Dreiecksform bringen und dann entscheiden, ob das zugehörige Gleichungssystem lösbar ist oder nicht und dann die Lösung bestimmen.

MfG PhiBa
(mein erster Eintrag in diesem Forum, also bitte gnädig sein, falls was formal nicht passt)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]