matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGauss Algorithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Gauss Algorithmus
Gauss Algorithmus < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauss Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Mo 07.01.2013
Autor: Joner

Aufgabe
2. Lösen Sie das Gleichungssystem a) für alle k mit dem Gaußschen Algorythmus! Berechnen Sie x im Gleichungssystem.

X+3y+3z=1
2x+y+5z=1
4x+2y+kz=2
3x+4y+8z=2

Meine Frage ist, wie ich ein Gleichungssystem mit Gauss Algorithmus  lösen kann?  Ich weiss, wie es mit 3  Gleichungen  geht, nämlich auf Dreiecksform bringen und mittels Einsetzungverfahren  lösen, aber wie  kann ich mit dem obigen GS machen, weil auf Dreiecksform  bringen ist schlecht, brauche ihre Hilfe, danke MFG.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gauss Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Mo 07.01.2013
Autor: MathePower

Hallo Joner,

[willkommenmr]


> 2. Lösen Sie das Gleichungssystem a) für alle k mit dem
> Gaußschen Algorythmus! Berechnen Sie x im
> Gleichungssystem.
>  
> X+3y+3z=1
> 2x+y+5z=1
> 4x+2y+kz=2
> 3x+4y+8z=2
>  Meine Frage ist, wie ich ein Gleichungssystem mit Gauss
> Algorithmus  lösen kann?  Ich weiss, wie es mit 3  
> Gleichungen  geht, nämlich auf Dreiecksform bringen und
> mittels Einsetzungverfahren  lösen, aber wie  kann ich mit
> dem obigen GS machen, weil auf Dreiecksform  bringen ist
> schlecht, brauche ihre Hilfe, danke MFG.


Du kannst auf die ersten beiden Gleichungen und die letzte Gleichung
den Gauss-Algorithmus anwenden. Dessen Lösungen dann in die
verbleibende Gleichung einsetzen und so diejenigen k ermitteln, für
welches obiges Gleichungssystem lösbar ist.


>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Gauss Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 Mo 07.01.2013
Autor: Joner

Danke für deine Antwort Mathepower, Die Lösung hätte ich mir nicht so einfach vorgestellt, Gilt der von dir genannte Ansatz  für alle Gleichungssysteme,die über keine Hauptdiagonale verfügen. z.B. Gleichungssysteme mit 3 Gleichungen und 4 Unbekannten. MFG

Bezug
                        
Bezug
Gauss Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Mo 07.01.2013
Autor: MathePower

Hallo Joner,


> Danke für deine Antwort Mathepower, Die Lösung hätte ich
> mir nicht so einfach vorgestellt, Gilt der von dir genannte
> Ansatz  für alle Gleichungssysteme,die über keine
> Hauptdiagonale verfügen. z.B. Gleichungssysteme mit 3
> Gleichungen und 4 Unbekannten. MFG


Der Ansatz gilt nur für den hier behandelten Fall.


Gruss
MathePower

Bezug
        
Bezug
Gauss Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Mo 07.01.2013
Autor: Joner

Aufgabe
b) für alle geeigneten Zahlen k mit der Cramerschen Regel! Lösen Sie das System b) für die restlichen Fälle!
X+3y+3z=1  b) (k – 1) x + z = 1
2x+y+5z=1     (k – 2) y = 1
4x+2y+kz=2     kz = 1
3x+4y+8z=2

Ich habe noch eine Frage, hoffe, dass ich nicht zu nervig bin.
b-Teil meiner Aufgabe lautet (sihe Oben), Ich habe das Gleichungssystem gelöst

[mm] \begin{vmatrix} x & y & z & 1 \\ 1 & 3 & 3 & 1 \\ 2 & 1 & 5 & 1 \\ 3 & 4 & 8 & 1 \\ \end{vmatrix} [/mm]

Dann  habe ich (2*I)-II und (3*I)-III genommen usw.  k = 10 hatte ich als Ergebnis, und jetzt meine Frage, Cramersche Regel funktioniert ja nicht bei 4x3 Matrizen, soll ich wieder 3 Gleichungen(ink. die mit k) beliebig aussuchen und die Determinante berechnen ?

MFG

Bezug
                
Bezug
Gauss Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Di 08.01.2013
Autor: MathePower

Hallo Joner,

> b) für alle geeigneten Zahlen k mit der Cramerschen Regel!
> Lösen Sie das System b) für die restlichen Fälle!
>  X+3y+3z=1  b) (k – 1) x + z = 1
>  2x+y+5z=1     (k – 2) y = 1
>  4x+2y+kz=2     kz = 1
>  3x+4y+8z=2
>  Ich habe noch eine Frage, hoffe, dass ich nicht zu nervig
> bin.
>  b-Teil meiner Aufgabe lautet (sihe Oben), Ich habe das
> Gleichungssystem gelöst
>  
> [mm]\begin{vmatrix} x & y & z & 1 \\ 1 & 3 & 3 & 1 \\ 2 & 1 & 5 & 1 \\ 3 & 4 & 8 & 1 \\ \end{vmatrix}[/mm]
>  
> Dann  habe ich (2*I)-II und (3*I)-III genommen usw.  k = 10
> hatte ich als Ergebnis, und jetzt meine Frage, Cramersche
> Regel funktioniert ja nicht bei 4x3 Matrizen, soll ich
> wieder 3 Gleichungen(ink. die mit k) beliebig aussuchen und
> die Determinante berechnen ?
>

Ja.


> MFG  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]