Gauss-Weierstrass Summation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 21:25 Mi 12.07.2017 | Autor: | havoc1 |
Hallo,
ich arbeite mich gerade durch das Buch Fourier Analysis von Duoandikoetxea. Ich bin nun an einer Stelle an der ich nicht weiterkomme. f sei eine Funktion aus [mm] L^p [/mm] mit 1 [mm] \le [/mm] p [mm] \le2, [/mm] also so dass die Fouriertransformierte [mm] \hat{f} [/mm] als Funktion definiert ist. Nun wird im Buch (S. 19) folgende Funktion definiert:
[mm] u(z)=\integral_{0}^{\infty}{\hat{f}(\xi) e^{{2\pi i z \xi}} d \xi} [/mm] + [mm] \integral_{-\infty}^{0}{\hat{f}(\xi) e^{{2\pi i \overline{z} \xi}} d \xi}
[/mm]
wobei z=x+it
(Als Spezialfall des mehrdimensionalen Falles) mit dem Kommentar, dass hieraus unmittelbar erkennbar ist, dass u harmonisch ist.
Offenbar kann man hierbei vor allem die komplexe Darstellung ausnutzen. Ich habe soetwas bisher aber nicht gesehen. Normalerweise kenne ich den Nachweis der Harmonizität über den Laplace Operator, um das anzuwenden würde ich aber wieder in den [mm] R^2 [/mm] zurückkehren, was wohl hier nicht Sinn der Sache ist. Könnte mir jemand einen Tipp geben wie man hier vorgeht?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Do 20.07.2017 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|