matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGauß-Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Gauß-Verfahren
Gauß-Verfahren < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß-Verfahren: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:53 Mo 10.12.2012
Autor: Maurizz

Aufgabe
a) Geben Sie die Lösung [mm] x_{1},x_{2},x_{3} \in \IC [/mm] des linearen Gleichungssystems in der Form [mm] x_{j} [/mm] = [mm] a_{j}+b_{j}i, a_{j}, [/mm] b{j} [mm] \in \IR [/mm] und j = 1,2,3 an.
[mm] \pmat{ (1+i) & 0 & 2 & 0 \\ 0 & 1 & 0 & i \\ 0 & 0 & i & 1} [/mm]

b) Für welche [mm] \alpha \beta \gamma \in \IR [/mm] is das lineare Gleichungssystem lösbar?
[mm] \pmat{ 1 & 1 & 1 & 0 \\ 2 & (\alpha + 3) & 2 & 3\gamma \\ 3 & 3 & (a^{2}+2) & (\beta-2) \\ 3 & (\alpha + 4) & 3 & (\gamma)^{2} } [/mm]



a)
      [mm] x_{2} [/mm] = i
      [mm] x_{3}*i [/mm] = 1
      [mm] x_{1}(1+i) [/mm] + [mm] 2x_{3}*i [/mm] = 0

Ich weiß nicht ob ich die Zeilen richtig herausgelesen haben.
Und wie ich das in die Form a + bi überführen soll.

b)
    Nachdem ich etwas gerechnet habe:
    [mm] \pmat{1 & 0 & 0 & \bruch{-3\gamma\alpha-3\gamma+\beta\alpha+\beta-2\alpha-2}{\alpha^{2}-1} \\ 0 & 1 & 0 & \bruch{3\gamma}{\alpha+1} \\ 0 & 0 & 1 & \bruch{\beta-2}{\alpha-1} \\ 0 & (\alpha+1) & 0 & \gamma^{2}} [/mm]

Was ist mit der 4. Zeile? Kann ich sie einfach stehen lassen als eine andere Formel für [mm] x_{2}? [/mm]
Bzw. stimmt überhaupt irgendwas von dem was ich da gemacht habe?


        
Bezug
Gauß-Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mo 10.12.2012
Autor: Maurizz

Die b) hat sich erledigt.
Hab nochmal neu gerechnet und dann Fallunterscheidungen für [mm] \alpha \beta \gamma [/mm] gemacht.

Zur a) dreh ich mich im moment immer noch im kreis

Bezug
        
Bezug
Gauß-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:46 Di 11.12.2012
Autor: leduart

Hallo
1. das ist die erweiterte matrix, die letzte Spalte der Ergebnisvektor? dann ist

      $ [mm] x_{2} [/mm] $ = i
      $ [mm] x_{3}\cdot{}i [/mm] $ = 1
      $ [mm] x_{1}(1+i) [/mm] $ + $ [mm] 2x_{3}\cdot{}i [/mm] $ = 0
die letzte zeile muss wohl
$ [mm] x_{1}(1+i) [/mm] $ + $ [mm] 2x_{3} [/mm] $
sein, wenn ich deine matrix richtig lese

also hast du [mm] x_1=i [/mm] oder 0+i*1 [mm] b_1=1 a_1=0 [/mm]
[mm] x_1*(1+i)-2i=0 [/mm]
[mm] x_1=2i/(1+i) [/mm] mit (1-i) erweitern, dann hast du da wieder a+ib stehen.
einen Bruch mit kompl Zahl im Nenner erweitert man immer mit dem konj. kompl, des Nenners.
Gruss leduart
Gruss leduart




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]