matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGanzwertige Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Ganzwertige Polynome
Ganzwertige Polynome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzwertige Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:08 Mi 21.12.2011
Autor: valoo

Aufgabe
Betrachten Sie die ganzwertigen Polynome [mm] f\in \IQ[X], [/mm] d.h. Polynome mit der Eigenschaft, dass [mm] f(n)\in \IZ [/mm] für alle [mm] n\in \IZ [/mm]
Beispiele sind die sogenannten Binomialpolynome [mm] Q_{k}(X):=\bruch{1}{k!}\produkt_{i=0}^{k-1}(X-i) [/mm]
Der Differezenoperator auf [mm] \Q[X] [/mm] ist definiert durch [mm] \Delta(f):=f(X+1)-f(X) [/mm]

Zeigen Sie, dass [mm] \Delta(Q_{k})=Q_{k-1}. [/mm]

Zeigen Sie ferner, dass für [mm] f\in \Q[X] [/mm] folgende Bedingungen äquivalent sind:

(i) f ist ganzwertig
(ii) f(n) ist ganz für alle [mm] n\in \IZ [/mm] hinreichend groß
(iii) f ist [mm] \IZ- [/mm] Linearkombination der [mm] Q_{k} [/mm]
(iv) [mm] \Delta(f) [/mm] ist [mm] \IZ-Linearkombination [/mm] der [mm] \Q_{k} [/mm] und mindestens ein f(n) ist ganz

Hallo!

Nun, der erste Teil ist klar, dass mit dem Differenzenoperator von so nem Binomialpolynom. Bei den Äquivalenzen ist auch einiges schon klar, nämlich (i) nach (ii) und (iii) nach (iv)
Bleiben (ii) nach (iii) und (iv) nach (i)
Wenn f ab einer bestimmten Grenze immer ganz ist, kann man sich dann davon ausgehend so eine Darstellung als Linearkombination der Binomialpolynome basteln? Aber irgendwie hab ich keine Vorstellung davon, wie genau man das anstellen könnte...Okay, f hat natürlich endlichen Grad, also kann man sich auch nur endlich viele [mm] Q_{k} [/mm] hernehmen, nämlich [mm] Q_{0} [/mm] bis [mm] Q_{deg(f)}, [/mm] aber wie ich nun auf die Koeffizienten kommen soll? mmh...

(iv) nach (i) Irgendwie muss man von [mm] \Delta(f) [/mm] Rückschlüsse auf f machen... aber das ist doch nicht injektiv, oder? Im Kern ist doch alles konstante...

        
Bezug
Ganzwertige Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mi 21.12.2011
Autor: hippias

Ich haette eine Idee: Die Abbildung [mm] $\Delta:\IQ[X]\to \IQ[X]$ [/mm] ist [mm] $\IQ$-Vektorraum [/mm] Endomorphismus. Beachte, dass fuer [mm] $f\in \IQ[X]\setminus \IQ$ [/mm] gilt, dass [mm] $grad(\Delta(f))= [/mm] grad(f)-1$.
Ueberlege Dir, dass [mm] $Kern\Delta= \IQ$ [/mm] ist.

ii) nach iii): Induktion nach dem Grad von $f$. Im Induktionsschritt ueberlege ich mir, dass [mm] $\Delta(f)$ [/mm] die Induktionsvoraussetzung erfuellt. Nach Induktionsvoraussetzung ist nun [mm] $\Delta(f)= \sum_{l=1}^{m}a_{l} Q_{l}$, $a_{l}\in \IZ$. [/mm] Du hast schon bewiesen, dass [mm] $Q_{l}= \Delta(Q_{l+1})$ [/mm] ist. Damit folgt $f- [mm] \sum_{l=1}^{m}a_{l} Q_{l+1}\in [/mm] Kern [mm] \Delta= \IQ$. [/mm] Nun duertfe es nicht mehr schwer sein sich mit Hilfe der besonderen Eigenschaften von $f$ und [mm] $Q_{j}$ [/mm] zu ueberlegen, dass sogar $f- [mm] \sum_{l=1}^{m}a_{l} Q_{l+1}\in \IZ$ [/mm] gilt.

Das schoene ist: iv) nach i) geht kann analog. Aus der Voraussetzung kann ganz analog wieder geschlossen werden, dass $f- [mm] \sum_{l=1}^{m}a_{l} Q_{l+1}\in \IQ$ [/mm] gilt. Aus der Voraussetzung $f(n)$ ganz fuer ein $n$ ergibt sich wieder $f- [mm] \sum_{l=1}^{m}a_{l} Q_{l+1}\in \IZ [/mm] $

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]