matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisGanzrationale Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Ganzrationale Funktionen
Ganzrationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzrationale Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Mi 29.09.2004
Autor: lavender

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,und danke schon mal an alle die mir versuchen zu helfen ;)
Ich muss folgende Aufgabe der Klasse erklären und kann sie nicht mal selber lösen...

Gegeben sind 3 Punkte A (0/0), B (3/0) und C (1/2).
Die Teilaufgaben sind voneinander unabhängig.

a) Gesucht ist die Gleichung der ganzrationalen Funktion 3. Grades, die durch A,B und C geht und deren Graph mit der positiven x-Achse genau ein Flächenstück mit dem Flächeninhalt 6 einschliesst.

b) Gesucht ist die Gleichung der ganzrationalen Funktion 3. Grades, die in A die Gerade AC berührt und in B senkrecht zur Geraden BC verläuft.


Zu a) habe ich folgenden Anfang:

[mm] Ax^{3} [/mm] + [mm] Bx^{2} [/mm] + Cx + D = 0
da A (0/0) ist muss D=0 sein.

Punkt B: 27A+9B+3C=0
Punkt C: A+B+C-2=0

Nun habe ich keine Ahnung wie weiter.

Und bei Aufgabe b) habe ich nicht mal einen Ansatz...

Danke schon mal zum voraus


        
Bezug
Ganzrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Mi 29.09.2004
Autor: nitro1185

Hallo!!!

Zu a.)  Die Gleichung lautet allgemein: y=ax³+bx²+cx+d Wie du weißt musst du die Koeffizienten a,b,c und d bestimmen!!Dazu brauchst du 4 Bedingungen:

1.) A [mm] \in [/mm] f         x und y Koordinaten der Punkte einsetzen!!!!
2.) B [mm] \in [/mm] f
3.) C [mm] \in [/mm] f      
4.) Du weißt,dass die Fläche zwischen 0 und 3 6 beträgt,oder???

=> [mm] \integral_{0}^{3} ax³+bx²+cx+d\, [/mm] dx=6

=> [mm] \bruch{ax^{4}}{4}+\bruch{bx³}{3}+\bruch{cx²}{2}+dx=6 [/mm]    Und zwar in den Grenzen von 0 bis 3!!!!

So jetzt gehst du vor wie normal bei einem bestimmten integral!!!

F(3)-F(0)=6      F(0)=0 => F(3)=6   einsetzten und dann hast du die 4.Bedingung


mfg daniel

Bezug
                
Bezug
Ganzrationale Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:34 Mi 29.09.2004
Autor: lavender

Danke,habe nach einigen Flüchtigkeitsfehlern beim Auflösen die (galub ich) richtige Lösung gefunden. Und logisch scheints mir auch.
Versuchs jetzt noch beim b), wobei mir dies schwieriger scheint.
Wollt mich nur noch schnell bedanken,hab mir nämlich letzte Nacht den Kopf zerbrochen über dieser Aufgabe...;)

Bezug
        
Bezug
Ganzrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mi 29.09.2004
Autor: nitro1185

Hallo!!So nun zu der 2.ten Aufgabe!!!!

f(x)=ax³+bx²+cx+d    Du brauchst wieder 4 Bedingungen!!!!

Du weißt,dass die Funktion A berührt => A [mm] \in [/mm] f   => f(0)=0

Du weißt,dass die Funktion die Gerade im Punkt A berührt => du weißt die Steigung beim Punkt A,denn die Gerade ist nämlich die Tangente der Funktion beim Punkt A!!Kannst du dir das vorstellen??

[mm] \vec [/mm] AC= {1 [mm] \choose [/mm] 2} alles klar??=> Steigung ist 2!!!!

=> f'(0)=2

So den Rest kannst du selber!!

Tipps: Ist der Punkt B [mm] \in [/mm] f?????
           Wenn eine Gerade dur einen Punkt geht und du weißt aber nur die Gerade,die normal zu der Gerade,die durch den Punkt geht(=Tangente),so gehst du wie folgt vor:

1.) Steigung der Gerade,die normal zur Tangente steht berechnen (z.B [mm] \bruch{1}{3} [/mm]

2.) => Die Steigung der Tangente wäre dann [mm] \bruch{-3}{1} [/mm]  1 Vorzeichen ändern und den Bruch umdrehen!!!!!!!!!!!!!

Jetzt habe ich dir viel erklärt--bitte versuche es auch zu verstehn!!!

grüße daniel

Bezug
                
Bezug
Ganzrationale Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Mi 29.09.2004
Autor: lavender

Also hier blick ich noch nicht ganz durch:
f'(0)=2 führt dann zu c=2, oder?
Sonst verstehe ich die Ausführungen zum Punkt A.

Zum Punkt B: Die Steigung der Geraden BC ist -1, also ist diejenige der Tangente 1. Dann ist doch f'(3)=1. Stimmt das soweit?
Das wäre dann [mm] 3ax^{2} [/mm] + 2bx + c = 1
oder 27a + 6b + 2 = 1  [mm] \Rightarrow [/mm] 27a + 6b = -1

Aber jetzt brauche ich doch noch eine Gleichung, und irgednwie finde ich die nicht...


Bezug
                        
Bezug
Ganzrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Do 30.09.2004
Autor: Paulus

Sali lavender

> Also hier blick ich noch nicht ganz durch:
>  f'(0)=2 führt dann zu c=2, oder?

[ok]

>  Sonst verstehe ich die Ausführungen zum Punkt A.
>  
> Zum Punkt B: Die Steigung der Geraden BC ist -1, also ist
> diejenige der Tangente 1. Dann ist doch f'(3)=1. Stimmt das
> soweit?

[ok]

>  Das wäre dann [mm]3ax^{2}[/mm] + 2bx + c = 1
>  oder 27a + 6b + 2 = 1  [mm]\Rightarrow[/mm] 27a + 6b = -1
>  

[ok]

> Aber jetzt brauche ich doch noch eine Gleichung, und
> irgednwie finde ich die nicht...
>  
>  

Also, bis jetzt hämmer uusgwärtet:

$f(0)=0$
$f'(0)=2$
$f'(3)=1$

do fählt doch nono

$f(3)=0$

will de Graf jo dur $B$ go mues! ;-)

Mit lieben Grüssen

Paul



Bezug
                                
Bezug
Ganzrationale Funktionen: Für unsere deutschen Freunde
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:05 Do 30.09.2004
Autor: Paulus

Hallo lavender

> Also hier blick ich noch nicht ganz durch:
>  f'(0)=2 führt dann zu c=2, oder?

[ok]

>  Sonst verstehe ich die Ausführungen zum Punkt A.
>  
> Zum Punkt B: Die Steigung der Geraden BC ist -1, also ist
> diejenige der Tangente 1. Dann ist doch f'(3)=1. Stimmt das
> soweit?

[ok]

>  Das wäre dann [mm]3ax^{2}[/mm] + 2bx + c = 1
>  oder 27a + 6b + 2 = 1  [mm]\Rightarrow[/mm] 27a + 6b = -1
>  

[ok]

> Aber jetzt brauche ich doch noch eine Gleichung, und
> irgednwie finde ich die nicht...
>  
>  

Also, bis jetzt haben wir ausgwertet:

$f(0)=0$
$f'(0)=2$
$f'(3)=1$

da fehlt doch nur noch

$f(3)=0$

weil der Graph ja durch $B$ gehen muss! ;-)

Mit lieben Grüssen

Paul



Bezug
                                
Bezug
Ganzrationale Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Do 30.09.2004
Autor: lavender

Ui,messi vilmol! Isch jo eigentlich ganz logisch,hani nur wieder mol nid grad dradänkt ;) (Ha teilwis so d Gab dassi vill zwit gang go sueche und uf üsserscht kompizierti Glichige chum,wo denn am Schluss natürlich nüt bringe...)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]