matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Ganzrationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Ganzrationale Funktion
Ganzrationale Funktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzrationale Funktion: Definition
Status: (Frage) beantwortet Status 
Datum: 19:54 Do 22.11.2012
Autor: lolalola

Aufgabe
Welche Funktionen sind ganzrational?


moinmoin!
laut http://www.mathematik.net/ganzrationale-fkt/py01s2.htm und wikipedia und co ist eine ganratione funktion wie folgt deffiniert:

          f(x) = [mm] a_{n}x^{n} [/mm]  + [mm] a_{n-1}x^{n-1} [/mm] + ...  +  [mm] a_{1}x [/mm] + [mm] a_{0} [/mm]     (mit: [mm] a_{n}\not=0) [/mm]

ich verstehe dass so, dass also eine funktion nur dann ganzrational ist, wenn die potenzen, sozusagen von term zu term "runtergezählt" werden, ohne lücke. wäre eine Lücke vorhanden, so wäre ja [mm] a_{n}=0 [/mm]

nun heißt es aber, dass zB [mm] f(x)=7x^{4}+3x [/mm] eine ganzrationale funktion ist. Wie passt das zusammen???

Für eine Antwort wär ich euch sehr dankbar.

Gruß
Lola

Nur für Erst-Poster
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ganzrationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Do 22.11.2012
Autor: M.Rex

Hallo Lola und [willkommenmr]

> Welche Funktionen sind ganzrational?
>  moinmoin!
>  laut
> http://www.mathematik.net/ganzrationale-fkt/py01s2.htm und
> wikipedia und co ist eine ganratione funktion wie folgt
> deffiniert:
>  
> f(x) = [mm]a_{n}x^{n}[/mm]  + [mm]a_{n-1}x^{n-1}[/mm] + ...  +  [mm]a_{1}x[/mm] +
> [mm]a_{0}[/mm]     (mit: [mm]a_{n}\not=0)[/mm]
>  
> ich verstehe dass so, dass also eine funktion nur dann
> ganzrational ist, wenn die potenzen, sozusagen von term zu
> term "runtergezählt" werden, ohne lücke. wäre eine
> Lücke vorhanden, so wäre ja [mm]a_{n}=0[/mm]
>  
> nun heißt es aber, dass zB [mm]f(x)=7x^{4}+3x[/mm] eine
> ganzrationale funktion ist. Wie passt das zusammen???

[mm] $f(x)=\underbrace{7x^{4}}_{a_{4}x^{4}}+\underbrace{0x^{3}}_{a_{3}x^{3}}+\underbrace{0x^{2}}_{a_{2}x^{2}}+\underbrace{3x^{1}}_{a_{1}x^{1}}+\underbrace{0}_{a_{0}}$ [/mm]

Gefordert ist nur [mm] a_n\ne0, [/mm] alle anderen Koeffizienten [mm] a_{n-1},a_{n-2}\ldots,a_{1},a_{0} [/mm] dürfen Null sein, sogar alle gleichzeitig.

Schau dich für weitere Informationen mal auf den []Matheseiten von poenitz-net um, für dich dürfte das Kapitel 4 gerade interessant sein. Dort hast du die Sachen "schulgerechter" aufgearbeitet als bei der Wikipedia.

>  
> Für eine Antwort wär ich euch sehr dankbar.
>  
> Gruß
>  Lola


Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]