matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenGanzrationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Ganzrationale Funktion
Ganzrationale Funktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzrationale Funktion: Problem mit Aufgaben
Status: (Frage) beantwortet Status 
Datum: 19:19 Mo 28.04.2008
Autor: MZKai

Aufgabe


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: Giga.de

Hey, wäre sehr verbunden, wenn ihr mir eure Hilfe geben würdet, weiß bei meinen Übungsaufgaben echt nicht weiter...

1. Gegeben is Funktion f mit f(x) = x³ - 6x² + 8x + 2. Berechnen Sie...

- an welchen Stellen die Fkt. f den Wert 2 annimmt.
- an welchen Stellen der Graph der Fkt f die Steigung -1 hat.
- in welchen Bereichen (Intervallen) der Graph zu f als Links- bzw- als Rechtskurve verläuft.

2. Welche der Aussagen sind wahr bzw. falsch? Begründe.

- Alle Graphen zu ganzrationalen Funktionen schneiden die y-Achse.
- Alle ganzrationalen Fkt. dritten Grades besitzen einen Wendepunkt.
- Eine ganzrationale Fkt vom Grad 2 hat mind. einen Extrempunkt.
- Die Nullstellen der ersren Ableitung einer Funktion sind die Extremstellen der Fkt. .


Ich verzweifle hier schon, brauche dies aber sehr dringend. Ich würde hier nicht nachfragen und euch nerven, wenn ich noch möglichkeiten hätte, diese Aufgaben zu lösen.
Ich bitte um eure Hilfe. Wäre also nett wenn ihr Lösungsvorschläge abgeben würdet.

Vielen Dank im Vorraus.

Könnte mir da jemand Lösungen geben, ich weiß nicht weiter...

        
Bezug
Ganzrationale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mo 28.04.2008
Autor: Steffi21

Hallo,

eigentlich solltest du ja wenigstens einige Ideen beisteuern:

1)

1.1.) [mm] 2=x^{3}-6x^{2}+8x+2 [/mm] jetzt x berechnen
1.2.) f'(x)=-1 du erhälst zwei Stellen
1.3). untersuche die 2. Ableitung, wann ist sie negativ bzw. positiv

2)

hier habt ihr doch schon bestimmt hinreichend viele Aufgaben gelöst, bzw gezeichnet, stelle mal deine Vermutungen bitte vor,

Steffi


Bezug
                
Bezug
Ganzrationale Funktion: Idee
Status: (Frage) beantwortet Status 
Datum: 19:51 Mo 28.04.2008
Autor: MZKai

zu Aufgabe 2: Vermutungen:

- Falsch, da y-Achse Schnitt- UND Berührpunkt haben kann (Bin mir nicht sicher, da ich nicht weiß, ob nur Funktion f gemeint ist oder alle Ableitungen)

- Falsch, da Wendepunkte nur die Kandidaten von den Nullstellen von f'' sind (auch unsicher)

- Richtig, da - Kandidaten für Extremstellen sind die Nullstellen von f' - -> erste Ableitung hat x, also hoch eins, also einen Extrempunkt.

- Richtig, wie oben begründet (unicher, weil sicher nicht 2 mal das gleiche abgefragt wird.)

Bezug
                        
Bezug
Ganzrationale Funktion: Hinweise
Status: (Antwort) fertig Status 
Datum: 08:08 Di 29.04.2008
Autor: Loddar

Hallo MZKai,

[willkommenmr] !!


> - Falsch, da y-Achse Schnitt- UND Berührpunkt haben kann
> (Bin mir nicht sicher, da ich nicht weiß, ob nur Funktion f
> gemeint ist oder alle Ableitungen)

[notok] Es gibt doch immer einen Schnittpunkt mit der y-Achse, da ganzrationale Funktionen stets an der stelle [mm] $x_0 [/mm] \ = \ 0$ definiert sind.




> - Falsch, da Wendepunkte nur die Kandidaten von den
> Nullstellen von f'' sind (auch unsicher)

[notok] Berechne mal die 2. ableitung und deren Nullstelle(n) einer allgemeinen ganzrationalen Funktion 3. Grades $y \ = \ [mm] a*x^3+b*x^2+c*x+d$ [/mm] .



  

> - Richtig, da - Kandidaten für Extremstellen sind die
> Nullstellen von f' - -> erste Ableitung hat x, also hoch
> eins, also einen Extrempunkt.

[ok]



  

> - Richtig, wie oben begründet (unicher, weil sicher nicht 2
> mal das gleiche abgefragt wird.)

[notok] Denk noch mal an Sattelpunkte ... sind alle Nullstellen der 1. Ableitung auch stets Extremstellen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]