matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenGanzrationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Ganzrationale Funktion
Ganzrationale Funktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzrationale Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:34 Di 26.02.2008
Autor: addy

Aufgabe
Die Aufhängepunkt eines Kabels A und B sind an zwei vertikalen Masten festgebunden. In Bezug auf ein Koordinatensastem kann man die Lage des Kabels angenähert durch den Graphen mit er Funktion f mit [mm] f(x)=\bruch{1}{25\*a}\*x^{2}-\bruch{200+a}{25\*a}\x+8 [/mm] und einen geeigneten Parameter a mit 0<a<200 beschrieben.
Punkt B befindet sich auf der x-Achse; A bei (0/8)

a) Berechne die Länge der Strecke 0B (0=Ursprung des Koordinatensystems)
b) Punkt C des Kabels liegt auf derselben Höhe wie B. Wie lang ist die Strecke 0C

Welche Strecke muss man demnach messen, m den Parameter a zu bestimmen?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de

Ich weiß absolut nicht wie ich diese Aufgabe lösnen soll... Ich habe sch schon mit der pq-Formel versucht doch da kam nur "Unsinn" raus und es hat mich nicht  weitergebracht..
Ich hoffe sehr ihr könnt mir helfen!

LG Addy

        
Bezug
Ganzrationale Funktion: Aufgabe korrekt?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:58 Di 26.02.2008
Autor: Loddar

Hallo Addy,

[willkommenmr] !!


Ist die angegebene Funktion so richtig? Oder fehlt da nicht noch ein $x_$ hinter dem Bruchterm vor dem $+8_$ ?


Gruß
Loddar


Bezug
                
Bezug
Ganzrationale Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Di 26.02.2008
Autor: Teufel

Hi, ich antworte einfach mal: ja, da fehlt ein x, da ich die Aufgabe schon einmal zusammen mit der Schwester meiner Freundin gelöst habe!

Bezug
        
Bezug
Ganzrationale Funktion: Nullstellen ermitteln
Status: (Antwort) fertig Status 
Datum: 20:03 Di 26.02.2008
Autor: Loddar

Hallo Addy!


Wenn ich die Aufgabe richtig verstehe, muss man hier zunächst die Nullstellen der angegebenen funktion ermitteln.

MBp/q-Formel ist da genau der richtig Ansatz. Multipliziere dafür die Gleichung zunächst mit $25*a_$ , um die Normalform [mm] $x^2+p*x+q [/mm] \ = \ 0$ zu erhalten.

Was erhältst Du dann?


Gruß
Loddar


Bezug
                
Bezug
Ganzrationale Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Di 26.02.2008
Autor: addy

Das habe ich auch gemacht und da kommt das raus:

f(x)= 100+ [mm] \bruch{a}{2} \pm \wurzel{\bruch{a^{2}}{4}- 100a+10000} [/mm]
Nun hab ich mal versucht das unter der Wurzel mit der pq-Formel zu lösen, bekomme da aber für a=200 raus. Bei diesem Wert habe ich aber nur eine Nullstellen und das ist ja falsch weil B und C die Nullstellen sind...

Bezug
                        
Bezug
Ganzrationale Funktion: weiterrechnen
Status: (Antwort) fertig Status 
Datum: 20:35 Di 26.02.2008
Autor: Loddar

Hallo addy!


Du bist doch auf einem guten Weg. Gemäß Deiner Rechnung kannst Du die Wurzel also darstellen als:

[mm] $$\wurzel{\bruch{a^{2}}{4}- 100a+10000} [/mm] \ = \ [mm] \wurzel{\left(\bruch{a}{2}-100\right)^2 \ } [/mm] \ = \ [mm] \bruch{a}{2}-100$$ [/mm]

Damit ergeben sich also welche $x_$-Werte?


Gruß
Loddar


Bezug
                                
Bezug
Ganzrationale Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:52 Di 26.02.2008
Autor: addy

Hey super!!!

x1:a und x2: ist 200!!!

Vielen Dank!!!
War ja klar das ich ne binomische Formel übersehen ;-D
Danke hast mich echt gerettet!

Lg Addy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]