matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGanzrationale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Rationale Funktionen" - Ganzrationale Funktion
Ganzrationale Funktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzrationale Funktion: Kurvendiskussion
Status: (Frage) beantwortet Status 
Datum: 19:13 Di 14.02.2006
Autor: Marie

Hallo!
Ich habe heute die Aufgabe bekommen, mit der Funktion f(x)= x³ - 1/x²  eine Kurvendiskussion durchzuführen. Ich weiß auch im Prinzip wie man das macht, nur verwirrt mich die x³ etwas.. muss ich diese jetzt in die ganze Kurvendiskussion mit einbeziehen oder reicht es wenn ich mit - 1/x² rechne? ( wäre die ganze funktion gebrochen-rational wäre es also kein problem :-/ ) .. wie stelle ich hier z.B den Definitionsbereich fest usw?
wäre für eine Hilfe sehr dankbar

        
Bezug
Ganzrationale Funktion: Tipp
Status: (Antwort) fertig Status 
Datum: 19:49 Di 14.02.2006
Autor: Kuebi

Hallo du!

Zu deiner Frage ob du die ganze Funktion miteinbezihen musst: Ja, das musst du! ;-)
Vom Prinzip her funktioniert jede Kurvendiskussion gleich. Ein Schema könnte etwa sein:

Untersuchung auf ...

1. Definitionsbereich
2. Symmetrieeigenschaften
3. Verhalten im Unendlichen
4. Stetigkeit/Unstetigkeit
5. Nullstellen
6. y-Achsenabschnitt
7. Extremstellen
8. Wendepunkte
9. Graph

Um einige Tips zu den einzelnen Punkten zu geben ...

1. Definitionsbereich
     Der Definitionsbereich einer gebrochenrationalen Fkt. ist eben grade [mm] D_{f}=\IR [/mm] \ {x|f(x)=0}, in diesem speziellen Fall ist dies der Fall für x=0.

2. Symmetrieeigenschaften
     Gilt etwa f(x)=f(-x) (Symm. zur y-Achse) oder f(x)=-f(-x) (Symm. zum Koordinatenursprung)?

  3. Verhalten im Unendlichen
      Betrachte  [mm] \limes_{x\rightarrow\infty}f(x) [/mm] und  [mm] \limes_{n\rightarrow-\infty}f(x). [/mm]

  4. Stetigkeit/Unstetigkeit
      Hat f(x) eine Polstelle?

  5. Nullstellen
      f(x)=0

  6. y-Achsenabschnitt
      f(0)

  7. Extremstellen
      f'(x)=0 ...

  8. Wendepunkte
      f''(x)=0

Wie du leicht siehst, ist der Knackpunkt gegenüber einer ganzrationalen Funktion der mit dem Definitionsbereich, den Polstellen und evtl. Asymptoten.
Alles andere wird völlig analog behandelt.

Hoffe hiermit ist einiges klar geworden!

Vlg, Kübi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]