matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGanzheitsring, Dedekindring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Ganzheitsring, Dedekindring
Ganzheitsring, Dedekindring < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzheitsring, Dedekindring: Frage
Status: (Frage) beantwortet Status 
Datum: 14:29 Di 15.02.2005
Autor: sternschnuppe

Kann mir vielleicht noch jemand anschaulich erklären was ein dedekindring und was ein ganzheitsring ist ich brauch dazu irgendwas anschauliches was nicht so theoretisch wie eine definition ist zumal ich zu den Ganzheitsringen keine vernünftige definition finden konnte.
Danke

        
Bezug
Ganzheitsring, Dedekindring: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Do 17.02.2005
Autor: Julius

Hallo!

Was heißt hier "anschaulich"?

Eine Definition, in der alle Begriffe geklärt sind, ist doch anschaulich genug, oder?

Einen Integritätsbereich (was das ist, weißt du, nehme ich mal an ;-)), der noethersch (d.h. alle Ideale sind endlich erzeugt), ganz abgeschlossen (d.h. der Integritätsbereich stimmt mit seinem ganzen Abschluss im Quotientenkörper überein) und 1-dimensional (d.h. jedes vom Nullideal verschiedene Primideal ist maximal) ist, nennt man Dedekindring.

Im Wesentlichen sind dies die ganzen Abschlüssen von [mm] $\IZ$ [/mm] in endlichen Körpererweiterungen [mm] $K:\IQ$. [/mm]

Man erhält in diesen Ringen eine Version des Fundamentalsatzes der Arithmetik: Jedes vom Nullideal verschiedene Ideal kann eindeutig als Produkt von Primidealen geschrieben werden.

Ist [mm] $K:\IQ$ [/mm] eine endliche Körpererweiterung, so nennt man die Menge aller Elemente aus $K$, die Nullstellen eines normierten Polynoms mit ganzzahligen Koeffizienten sind, den Ganzheitsring des Körpers.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]