matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGammafunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Gammafunktion
Gammafunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gammafunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:51 Do 14.11.2013
Autor: EllaK

Hallo.
Kann mir jmd Tipps geben, wie ich diese Aufgabe berechnen kann?

G steht für Gammafunktion.

[mm] \bruch{G(\bruch{m+n}{2})}{G(\bruch{m}{2})*G(\bruch{n}{2})} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gruß, Ella

        
Bezug
Gammafunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Do 14.11.2013
Autor: fred97


> Hallo.
>  Kann mir jmd Tipps geben, wie ich diese Aufgabe berechnen
> kann?
>  
> G steht für Gammafunktion.
>  
> [mm]\bruch{G(\bruch{m+n}{2})}{G(\bruch{m}{2})*G(\bruch{n}{2})}[/mm]
>  

Ich nehme an, dass m und n natürliche Zahlen sind

Für n [mm] \in \IN [/mm] ist [mm] \Gamma(n)=(n-1)! [/mm]

Sind also m und n gerade, so kannst Du obiges verwenden.

Weiter gilt für n [mm] \in \IN_0: [/mm]

(*)   [mm] $\Gamma(n+\tfrac{1}{2}) [/mm] = [mm] \frac{(2n)!}{n!\,4^n}\,\sqrt{\pi} [/mm] $

Ist also m ungerade, so ist m=2k+1 mit k [mm] \in \IN [/mm] (der Fall m=1 ist klar).

Dann ist [mm] \bruch{m}{2}=k+\bruch{1}{2} [/mm]

Nun bemühe (*)

FRED

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Gruß, Ella


Bezug
                
Bezug
Gammafunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 Do 14.11.2013
Autor: EllaK

Okay.

Also habe ich dann stehen:
[mm] \bruch{2*G(\bruch{m+n}{2})}{(n-1)!*(m-1)!} [/mm] oder?

Ich verstehe nicht, wie ich die obige Gammafkt, also G( [mm] \bruch{m+n}{2}) [/mm] umformen kann.

Bezug
                        
Bezug
Gammafunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Do 14.11.2013
Autor: fred97


> Okay.
>  
> Also habe ich dann stehen:
> [mm]\bruch{2*G(\bruch{m+n}{2})}{(n-1)!*(m-1)!}[/mm] oder?

Nein !

Wenn m gerade ist, so ist [mm] \bruch{m}{2} \in \IN, [/mm] somit ist

     [mm] $\Gamma(\bruch{m}{2})=(\bruch{m}{2}-1)!$ [/mm]

Ist  m ungerade , so ist m=2k+1 mit k $ [mm] \in \IN [/mm] $.

Dann ist $ [mm] \bruch{m}{2}=k+\bruch{1}{2} [/mm] $

Somit:$ [mm] \Gamma(\bruch{m}{2}) [/mm] = [mm] \frac{(2k)!}{k!\,4^k}\,\sqrt{\pi} [/mm] $

FRED

>  
> Ich verstehe nicht, wie ich die obige Gammafkt, also G(
> [mm]\bruch{m+n}{2})[/mm] umformen kann.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]