matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesGammafunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - Gammafunktion
Gammafunktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gammafunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 Do 23.09.2021
Autor: Martinius

Aufgabe
1) Beweisen Sie:  [mm] $\Gamma(n+1) [/mm] = [mm] n*\Gamma(n)$ [/mm]  für  $  [mm] n\in\IN [/mm] $

2) Zeigen Sie: [mm] $\Gamma(n+1) [/mm] = n!$  für  $  [mm] n\in\IN [/mm] $

Hallo liebe Leute,

könnte einer von euch bitte einmal die Aufgaben (aus einem Schulbuch) angucken. Bei Beweisen bin ich immer unsicher.

                   Die Gammafunktion:   [mm] $\Gamma(n) [/mm] = [mm] \integral_{0}^{\infty} x^{n-1}e^{-x} \;dx$ [/mm]


1)  [mm] $\Gamma(n+1) [/mm] = [mm] \integral_{0}^{\infty} x^{n+1-1}e^{-x} \;dx \;=\;\integral_{0}^{\infty} x^{n}e^{-x}\;dx\;=\;\lim_{b \to \infty} \left[-x^n*e^{-x} \right]_{0}^{b}+ n*\integral_{0}^{\infty} x^{n-1}e^{-x}\;dx\;=\;-(0-0)+n*\Gamma(n) [/mm] $


2)      I.A.  n = 0  [mm] $\Gamma(0+1)\;=\; 0\;! \;=\;1$ [/mm]

I.V.  Es wird angenommen, dass [mm] $\Gamma(n+1) [/mm] = [mm] n;\!$ [/mm]  für ein [mm] $n\in\IN$ [/mm] gilt.

I.S. Schluss von n auf n+1:  [mm] $\Gamma((n+1)+1) \;=\;(n+1)*\Gamma(n+1)$ [/mm]  nach Induktionsvoraussetzung

$= [mm] \; (n+1)\;!$ [/mm]


Besten Dank für die Mühe!

LG, Martinius

        
Bezug
Gammafunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Do 23.09.2021
Autor: Gonozal_IX

Hiho,

> I.V.  Es wird angenommen, dass [mm]\Gamma(n+1) = n;\![/mm]  für ein
> [mm]n\in\IN[/mm] gilt.

Hier ist durch deinen Aufschrieb das Fakultätszeichen abhanden gekommen, im Code steht es aber, daher => ok.

>  
> I.S. Schluss von n auf n+1:  [mm]\Gamma((n+1)+1) \;=\;(n+1)*\Gamma(n+1)[/mm]
>  nach Induktionsvoraussetzung

Wenn du es so schreibst, ist nicht klar, worauf sich das "nach Induktionsvoraussetzung" bezieht. Auf das davor, oder das danach… Das davor ist natürlich das, was du vorher gezeigt hast.

Der Rest passt.

Gruß,
Gono

Bezug
                
Bezug
Gammafunktion: Kritik
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 Do 23.09.2021
Autor: statler

Hallo ihr beiden,
der logisch korrekte Beweis des Induktionsanfangs (aus der Definition) fehlt doch.
Gruß Dieter

Bezug
                        
Bezug
Gammafunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:50 Fr 24.09.2021
Autor: Gonozal_IX

Hiho,

>  der logisch korrekte Beweis des Induktionsanfangs (aus der Definition) fehlt doch.

da hast du natürlich völlig recht!
Danke für den Hinweis.

Gruß,
Gono

Bezug
                                
Bezug
Gammafunktion: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Sa 02.10.2021
Autor: Martinius

Hallo liebe Leute,

habt besten Dank für eure Antworten!

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]