matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGamma Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Gamma Funktion
Gamma Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gamma Funktion: Sterling Approximation
Status: (Frage) überfällig Status 
Datum: 11:46 So 20.06.2010
Autor: BergerBubb

Aufgabe 1
Die Funktionsgleichung für die Gamma Funktion lautet [mm] z*\Gamma [/mm] (z) = [mm] \Gamma [/mm] (z+1).
Die Stirling´sche Formel Lautet:
[mm] \Gamma [/mm] (z+1) = [mm] \wurzel{2\pi n} (\bruch{n}{e})^n *(1+O(\bruch{1}{n})) [/mm] für [mm] n\to\infty [/mm]

Zeigen sie für [mm] \beta [/mm] > 0

[mm] (-1)^n \vektor{-\beta \\ n} [/mm] = [mm] \bruch{1}{\Gamma(\beta)}n^{\beta-1}*(1+O(\bruch{1}{n})) [/mm] für [mm] n\to\infty [/mm]

Aufgabe 2
Für |z|<1 ist bekanntlich [mm] (1-z)^{-\beta} [/mm] = [mm] \summe_{i=0}^{\infty} \vektor{-\beta \\ n}*(-z)^n [/mm]
Prüfen Sie das asympthotische Verhalten der Koeffizienten an den Binomialreihen  für [mm] \beta [/mm] = 1,2,3.

[mm] (1-z)^-1=\bruch{1}{1-z}=1+z+z^2+z^3+... [/mm]
[mm] (1-z)^-2=(\bruch{1}{1-z})´=1+2z+3z^2+4z^3+... [/mm]
[mm] 2(1-z)^-3=(\bruch{1}{1-z})´´=2+2*3z+4*3z^2+5*4z^3+... [/mm]

Hi Leute
Bei der ersten Aufgabe, muss ich so wie es aussieht irgendwie die Sterlingformel benutzen.

Ich weiß schon, dass [mm] \vektor{-\beta \\ n}=\bruch{(-\beta)(-\beta-1)...(-\beta-n+1)}{n!} [/mm] ist und mit wachsendem n das ding auch immer Größer wird.

Die [mm] (-1)^n [/mm] sorgt ja dafür, dass  [mm] \vektor{-\beta \\ n} [/mm] immer positiv ist, da für ungerade n [mm] \vektor{-\beta \\ n} [/mm] negative Werte hat.

Weiter weiß ich, dass [mm] \Gamma(\beta)=(\beta-1)! [/mm]

Aber irgendwie habe ich das gefühl, dass die Aufgabe so nicht richtig sein kann. Habe die ganze sache mal Durchgerechnet mit dem PC und das O(1/n) bedeutet doch, dass mit wachsendem n dieser "Rest" immer kleiner werden muss. Sprich:

[mm] (-1)^n \vektor{-\beta \\ n} [/mm] - [mm] \bruch{1}{\Gamma(\beta)}n^{\beta-1} [/mm] =  [mm] \bruch{1}{\Gamma(\beta)}n^{\beta-1} [/mm] O(1/n)

Die Linke Seite der Gleichung, müsste doch jetzt gegen null gehen oder habe ich die O Notation total falsch im Kopf ?
Mein PC sagt mir aber, dass die Linke Seite auf nicht nach 0 geht. Habe es mit [mm] \beta [/mm] =7 und n = 10 , 100 , 1000 , 10000 ausprobiert und der Wert der rechten Seite wird immer Größer.

Weiß irgendwie nicht mehr weiter im Moment.


Für die Aufgabe 2, weiß ich nicht so recht, was da von mir verlangt ist.

Die 3 Gleichungen die Angegeben sind, verstehe ich das erste ist ja leicht Nachzurechnen und das Zweite ist die Definition in der Aufgabenstellung. Nun weiß ich nicht welchen asymptotische verhalten ich prüfen soll.

Wär gut, wenn ihr mir mal sagen könntet, was da eigentlich nun genau zu zeigen ist.

Gruß
Bubb

        
Bezug
Gamma Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Di 22.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]