matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGaloisgruppe endlicher Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Galoisgruppe endlicher Körper
Galoisgruppe endlicher Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoisgruppe endlicher Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mi 03.02.2010
Autor: Baumkind

Aufgabe
[mm] f(x)=x^3-2 [/mm] in [mm] \IF_{5}$ [/mm]
Es soll die Galoisgruppe in der Zerfällungskörper bestimmt werden.

Hi.
Also ich habe f(x) in seine irreduziblen Teile zerlegt:
[mm] $f(x)=(x-3)(x^2+3x+4)$. [/mm]
Nun weiß ich, dass der Zerfällungskörper  
[mm] $\IF_{25}=\IF_{5} [/mm] [X] / [mm] (x^2+3x+4)=\IF_{5} (\sqrt{2})$ [/mm] ist.
Die Galoisgruppe ist, isomorph zu [mm] $\IZ$/$2\IZ$. [/mm]
Nun meine eigentliche Frage(ich gehe mal davon aus, dass bis jetzt alles richtig ist): Ich habe hier einen Satz der besagt, dass die Gal.-gruppe einer endlichen Erweiterung vom Frobeniushom. erzeugt wird, also hier dann von
$x [mm] \mapsto x^5 [/mm] $.
Leider kann ich diesen Satz, sofern ich ihn richtige verstehe nicht anwenden. kann mir jmd helfen?!
lg

        
Bezug
Galoisgruppe endlicher Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Mi 03.02.2010
Autor: SEcki


> [mm]f(x)=x^3-2[/mm] in [mm]\IF_{5}$[/mm]
>  Es soll die Galoisgruppe in der Zerfällungskörper
> bestimmt werden.
>  Hi.
>  Also ich habe f(x) in seine irreduziblen Teile zerlegt:
>  [mm]f(x)=(x-3)(x^2+3x+4)[/mm].
>  Nun weiß ich, dass der Zerfällungskörper  
> [mm]\IF_{25}=\IF_{5} [X] / (x^2+3x+4)=\IF_{5} (\sqrt{2})[/mm] ist.
>  Die Galoisgruppe ist, isomorph zu [mm]\IZ[/mm]/[mm]2\IZ[/mm].
>  Nun meine eigentliche Frage(ich gehe mal davon aus, dass
> bis jetzt alles richtig ist):

Ich glaube auch (hoff ich mal)

> Ich habe hier einen Satz der
> besagt, dass die Gal.-gruppe einer endlichen Erweiterung
> vom Frobeniushom. erzeugt wird, also hier dann von
> [mm]x \mapsto x^5 [/mm].
>  Leider kann ich diesen Satz, sofern ich
> ihn richtige verstehe nicht anwenden. kann mir jmd
> helfen?!

Nun, diese Abbildung ist ein Körperisomoprhismus - die Elemente in der Galoisgruppe sind ja genau die Körperisos, die den Grundkörper fix lassen, was ja beim Primkörper immer der Fall ist. Und die Aussage ist: dieser Körperiso erzeugt die Galoisgruppe als Element dieser Gruppe. Klarer?

SEcki

Bezug
                
Bezug
Galoisgruppe endlicher Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Mi 03.02.2010
Autor: felixf

Hallo!

> > [mm]f(x)=x^3-2[/mm] in [mm]\IF_{5}$[/mm]
>  >  Es soll die Galoisgruppe in der Zerfällungskörper
> > bestimmt werden.
>  >  Hi.
>  >  Also ich habe f(x) in seine irreduziblen Teile
> zerlegt:
>  >  [mm]f(x)=(x-3)(x^2+3x+4)[/mm].
>  >  Nun weiß ich, dass der Zerfällungskörper  
> > [mm]\IF_{25}=\IF_{5} [X] / (x^2+3x+4)=\IF_{5} (\sqrt{2})[/mm] ist.
>  >  Die Galoisgruppe ist, isomorph zu [mm]\IZ[/mm]/[mm]2\IZ[/mm].
>  >  Nun meine eigentliche Frage(ich gehe mal davon aus,
> dass
> > bis jetzt alles richtig ist):
>  
> Ich glaube auch (hoff ich mal)

Ja, stimmt alles bisher. Hab's nachrechnen lassen ;-)

LG Felix


Bezug
                
Bezug
Galoisgruppe endlicher Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 Mi 03.02.2010
Autor: Baumkind

Erstmal danke für die schnelle Antwort. Was du mir geschrieben hast, war/ist mir soweit klar.
Wäre gut, wenn du das zu folgenden noch mal ja oder nein sagen könntest;):
Man hat für [mm] $\IF_{25}=\IF_{5} [/mm] [X] / [mm] (x^2+3x+4) [/mm] $ die Basis {1,x}.
Nun wird man [mm] $x\mapsto x^5$ [/mm] abgebildet. Explizit also
[mm] $\sqrt{2} \mapsto [/mm] 4 [mm] \sqrt{2}$. [/mm] Also wird meine NS von f [mm] $1+\sqrt{2}$ [/mm] auf die zweite NS [mm] $1-\sqrt{2}=1+4\sqrt{2}$ [/mm]  von f im Zerfällungskörper geschickt.

Bezug
                        
Bezug
Galoisgruppe endlicher Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mi 03.02.2010
Autor: SEcki


> Erstmal danke für die schnelle Antwort. Was du mir
> geschrieben hast, war/ist mir soweit klar.
> Wäre gut, wenn du das zu folgenden noch mal ja oder nein
> sagen könntest;):
>  Man hat für [mm]\IF_{25}=\IF_{5} [X] / (x^2+3x+4)[/mm] die Basis
> {1,x}.

Ja, wichtig - das sind die Restklassen , wenn man das Poynom herausteilt.

> Nun wird man [mm]x\mapsto x^5[/mm] abgebildet.

Verwechsel das nicht mit dem x aus der Basis - die Abbildung ist [m]\IF_{5} [X] / (x^2+3x+4)\to\IF_{5} [X] / (x^2+3x+4), y \mapsto y^5 [/m] . Nur zur Sicherheit, du sagst ja nicht, was du nicht weißt :p

> Explizit also
> [mm]\sqrt{2} \mapsto 4 \sqrt{2}[/mm].

Wenn es so ein Element dort gibt, ja. Das stimmt hier, muss aber nicht immer gelten. Es stimmt, da auch [m]\IF_{25}=\IF_{5} [X] / (x^2-2)[/m] gilt und es somit eine Lösung davon gibt.

> Also wird meine NS von f
> [mm]1+\sqrt{2}[/mm] auf die zweite NS [mm]1-\sqrt{2}=1+4\sqrt{2}[/mm]  von f
> im Zerfällungskörper geschickt.  

Konkret: was ist f? Wenn es [m]x^2+3x+4[/m] ist, so habe ich [mm]-1\pm\sqrt{2}[/mm] als Lösungen (also -1, nicht 1). Und der Automorphismus macht genau das.

Allgemeiner: eine Körperiso vertauscht die Nullstellen eines Polynoms, es ist eine Permutation der Nullstellen. Wenn du den Zerf.körper eines Polynoms über einem Körper betrachtest, und dann die Galoisgruppe betrachtest, wird jedes nicht triviale dort drin eine nicht triviale Permutation der Nullstellen ergeben. Es besteht zwischen den möglichen Permutationen und der Gestalt der Gruppe an sich ein starker Zusammenhang, schau mal in Algebra-Bücher/Skripte. Hier ist es ganz einfach: zwei Nullstellen, eine nicht-trivialer Körper-iso - also werden die Nst. vertauscht.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]