matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraGaloisgruppe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Galoisgruppe
Galoisgruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoisgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Fr 20.06.2008
Autor: djmatey

Hallo liebe Leute,

wenn ich für eine beliebige Gruppe G die Körpererweiterung
L/Fix(G) betrachte (L [mm] \supset [/mm] Fix(G) beliebig), ist dies dann immer eine Galoiserweiterung, oder muss ich dafür irgendwas für G voraussetzen?
Falls es immer eine Galoiserweiterung ist, kann ich irgendetwas über G aussagen?

Vielen Dank!
LG djmatey

        
Bezug
Galoisgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Sa 21.06.2008
Autor: statler

Hallo!

> wenn ich für eine beliebige Gruppe G die Körpererweiterung
> L/Fix(G) betrachte (L [mm]\supset[/mm] Fix(G) beliebig), ist dies
> dann immer eine Galoiserweiterung, oder muss ich dafür
> irgendwas für G voraussetzen?

Für eine wirklich beliebige Gruppe G hat die Frage nach meinem Dafürhalten noch keinen Sinn. G muß schon etwas mehr mit L zu tun haben als nur L [mm]\supset[/mm] Fix(G). Das wäre z. B. auch erfüllt, wenn Fix(G) die leere Menge wäre.

Also sei G eine Gruppe von Automorphismen von L. Im Algebra-Buch von Lang ist G endlich vorausgesetzt. Die Aussage stammt dann anscheinend von Artin.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Galoisgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:29 Mo 23.06.2008
Autor: djmatey


> Hallo!
>  

Hallo,

vielen Dank für Deine Antwort.


> > wenn ich für eine beliebige Gruppe G die Körpererweiterung
> > L/Fix(G) betrachte (L [mm]\supset[/mm] Fix(G) beliebig), ist dies
> > dann immer eine Galoiserweiterung, oder muss ich dafür
> > irgendwas für G voraussetzen?
>  
> Für eine wirklich beliebige Gruppe G hat die Frage nach
> meinem Dafürhalten noch keinen Sinn. G muß schon etwas mehr
> mit L zu tun haben als nur L [mm]\supset[/mm] Fix(G). Das wäre z. B.
> auch erfüllt, wenn Fix(G) die leere Menge wäre.
>  
> Also sei G eine Gruppe von Automorphismen von L.

Das stimmt natürlich, also setzen wir mal voraus, dass G eine nichtleere endliche Untergruppe der Automorphismen von L ist. Wie sieht's dann aus mit meiner Frage?

> Im
> Algebra-Buch von Lang ist G endlich vorausgesetzt. Die
> Aussage stammt dann anscheinend von Artin.

Es ist mir nicht klar, welche Aussage Du hier meinst. Meinst Du, dass dann L/Fix(G) eine Galoiserweiterung ist? Falls ja, kann man etwas über G aussagen?

>  
> Gruß aus HH-Harburg
>  Dieter

LG djmatey

Bezug
                        
Bezug
Galoisgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mo 23.06.2008
Autor: statler

Hallo + Mahlzeit!

> Das stimmt natürlich, also setzen wir mal voraus, dass G
> eine nichtleere endliche Untergruppe der Automorphismen von
> L ist. Wie sieht's dann aus mit meiner Frage?
>  
> > Im
> > Algebra-Buch von Lang ist G endlich vorausgesetzt. Die
> > Aussage stammt dann anscheinend von Artin.
>  
> Es ist mir nicht klar, welche Aussage Du hier meinst.
> Meinst Du, dass dann L/Fix(G) eine Galoiserweiterung ist?
> Falls ja, kann man etwas über G aussagen?

Sorry, da habe ich geschlampt. Die Aussage ist:

G (wie gehabt und) endlich [mm] \Rightarrow [/mm] L/Fix(G) galoissch

Ich denke, solange man keine Einschränkungen bzgl. L oder K macht (wie z. B. endlicher oder lokaler Körper), wird man wohl auch über G nicht mehr aussagen können.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]