matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGaloisgruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Galoisgruppe
Galoisgruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoisgruppe: Idee
Status: (Frage) beantwortet Status 
Datum: 16:19 Mo 19.05.2014
Autor: Topologe

Aufgabe
Seien K ein Körper, f [mm] \in [/mm] K[x] irreduzibel und seperabel vom Grad 3 mit Diskriminante [mm] \Delta. [/mm] Bestimmen Sie die Galoisgruppe von f (wenn nötig in Abhängigkeit von [mm] \wurzel{\Delta}) [/mm]

Hey,

bin bei dieser Aufgabe ein wenig ins Stocken geraten..

Also gesucht: Gal(f; K) = Aut(E;K) mit E=Zerfaellungskörper von f
Grad f ist 3, also 3 Nullstellen über E
[mm] f=(x-\alpha_{1})(x-\alpha_{2})(x-\alpha_{3}), [/mm] mit [mm] \alpha_{i} \in [/mm] E
Nur weiss ich jetzt nicht wirklich, wie ich eine Galoisgruppe in Abhängigkeit einer Diskriminante angeben kann...

Hat jemand vllt ne Idee? :-)


        
Bezug
Galoisgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:55 Di 20.05.2014
Autor: hippias

Die Galoisgruppe in Abhaengigkeit der Diskriminante zu bestimmen, bedeutet lediglich, dass sich je nach Eigenschaften der Diskriminante unterschiedliche Gruppen ergeben. Das wird sich aber alles von allein richtig ergeben.

Sei $G$ die Galoisgruppe. Beachte, dass $G$ auf der Mengen der Nullstellen von $f$ operiert. Als erstes wuerde ich mir mit Hilfe dieser Operation ueberlegen, welche Ordnungen $G$ haben kann. Beachte dabei insbesondere, dass $f$ als irreduzibel vorausgesetzt ist.



Bezug
                
Bezug
Galoisgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Di 20.05.2014
Autor: Topologe

Hi,

also f irreduzibel über K, da würde ich sagen: sei [mm] f=a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0} \in [/mm] K[x]. Dann sei [mm] g=\bruch{1}{a_{3}}*f [/mm]
[mm] \Rightarrow [/mm] g Minimalpolynom [mm] \Rightarrow [/mm] [E:K]=3=deg g, mit E Zerfällungskörper von f
Für Galoiserweiterungen gilt: |Gal(f;K)|=[E:K]=3

Und da f seperabel [mm] \Rightarrow \Delta \not= [/mm] 0

Da gilt |Gal(f;K)|=3 [mm] \Rightarrow [/mm] zyklisch, also [mm] \cong \IZ_{3}? [/mm]

So richtig weiss ich leider nicht, wie ich [mm] \Delta [/mm] einbauen kann, da ja schließlich gilt [mm] \Delta \not= [/mm] 0, also sind ja auch keine großartigen Fallunterscheidungen möglich

LG

Bezug
                        
Bezug
Galoisgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Di 20.05.2014
Autor: hippias

Das ist der springende Punkt: Wenn [mm] $\alpha$ [/mm] eine Nullstelle von $f$ ist, dann ist [mm] $K[\alpha]$ [/mm] nicht immer ein Zerfaellungskoerper! Und wann das doch der Fall ist, das wird dir die Diskriminante sagen.

Mit meiner letzten Mitteilung ueberlege Dir, dass der Grad der Erweiterung $3$ oder $6$ sein muss. Dann sehen wir weiter.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]