Gale-Robinson Sequence < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | The Gale Robinson Sequence:
Seien p, q, r [mm] \in \mathbb{N}_{> 0} [/mm] verschieden, sei n = p+q+r und sei die Zahlenfolge [mm] y_0, y_1, \dots [/mm] gegeben durch:
[mm] y_{k+n} [/mm] = [mm] \frac{\alpha y_{k+p}y_{k+n-p}+\beta y_{k+q}y_{k+n-q}+ \gamma y_{k+r}y_{k+n-r}}{y_k}.
[/mm]
Theorem 1.4:
As a function of the initial terms [mm] y_0, \dots, y_{n-1}, [/mm] every term of the Gale-Robinson sequence is a Laurent polynomial with coefficients in [mm] \mathbb{Z}[\alpha, \beta, \gamma]. [/mm] |
Hallo Leute,
ich sitze gerade an einigen Recherchen zu meiner Bachelorarbeit (Thema Laurent Phenomän) und komme mit der Formulierung aus meinem Paper nicht ganz klar. Womöglich zurück zu führen auf Englischschwächen.
Es geht um die Gale-Robinson Sequenz, wie oben definiert. Diese Sequenz liefert für [mm] y_0 [/mm] = [mm] \dots [/mm] = [mm] y_{n-1} [/mm] = 1 und positive, ganzzahlige [mm] \alpha, \beta [/mm] und [mm] \gamma [/mm] immer ganzzahlige Folgeglieder.
Das Theorem ist (bzw. soll) nun eine stärkere Formulierung bieten.
Ich weiß nur leider nicht wie der erste Teil gemeint ist: "As a function of the initial terms..."
Heißt das, jedes Anfangsglied wird als Funktion betrachtet oder heißt das wir betrachten eine Funktion abhängig von den Anfangswerten?
Weiter würde ich das so verstehen, dass dann jedes Folgeglied der Sequenz ein Laurent Polynom mit Koeffizienten aus dem Polynomring [mm] \mathbb{Z}[\alpha, \beta, \gamma] [/mm] ist.
Irgendwie komm ich mit dem Polynomring nicht ganz klar. Wie sehe das denn aus? Ich weiß leider nicht wie ich da am besten Googlen könnte.
Ich hoffe ihr könnt mir helfen, vllt wäre ein Beispiel schon nützlich genug. Nur da ich den ersten Teil schon nich verstehe, krieg ich auch kein Beispiel konstruiert.
Vielen Dank und liebe Grüße
Highchiller
|
|
|
|
Ich würd das wie folgt verstehen:
Man könnte ja auch eine Funktion drum basteln damit das ganze so aussieht:
[mm] y_{k+n} [/mm] = [mm] \frac{F(y_k\ , \dots\ ,y_{k+n-1} )}{y_{k}}
[/mm]
Dann sagt das Theorem, dass [mm] y_{k+n} [/mm] für jedes k [mm] \in \mathbb{N}_{\geq 0} [/mm] ein Laurentpolynom mit Koeffizienten aus [mm] \mathbb{Z}[\alpha, \beta, \gamma] [/mm] ist. Seh ich das so richtig?
Auch wenn die Vorstellung da lange versagt... Bisher hatte ich gedacht ein Laurentpolynom ist nichts weiter als ein Polynom in dem auch negative Exponenten erlaubt sind. Aber es geht wohl eher um die Koeffizienten...
Es geht quasi darum, dass trotz der Division die Koeffizienten des Laurent-Polynoms den Ring nicht verlassen. Gelle?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:11 Di 03.06.2014 | Autor: | meili |
Hallo Highchiller,
> The Gale Robinson Sequence:
> Seien p, q, r [mm]\in \mathbb{N}_{> 0}[/mm] verschieden, sei n =
> p+q+r und sei die Zahlenfolge [mm]y_0, y_1, \dots[/mm] gegeben
> durch:
> [mm]y_{k+n}[/mm] = [mm]\frac{\alpha y_{k+p}y_{k+n-p}+\beta y_{k+q}y_{k+n-q}+ \gamma y_{k+r}y_{k+n-r}}{y_k}.[/mm]
>
> Theorem 1.4:
> As a function of the initial terms [mm]y_0, \dots, y_{n-1},[/mm]
> every term of the Gale-Robinson sequence is a Laurent
> polynomial with coefficients in [mm]\mathbb{Z}[\alpha, \beta, \gamma].[/mm]
>
> Hallo Leute,
>
> ich sitze gerade an einigen Recherchen zu meiner
> Bachelorarbeit (Thema Laurent Phenomän) und komme mit der
> Formulierung aus meinem Paper nicht ganz klar. Womöglich
> zurück zu führen auf Englischschwächen.
>
> Es geht um die Gale-Robinson Sequenz, wie oben definiert.
> Diese Sequenz liefert für [mm]y_0[/mm] = [mm]\dots[/mm] = [mm]y_{n-1}[/mm] = 1 und
> positive, ganzzahlige [mm]\alpha, \beta[/mm] und [mm]\gamma[/mm] immer
> ganzzahlige Folgeglieder.
> Das Theorem ist (bzw. soll) nun eine stärkere
> Formulierung bieten.
>
> Ich weiß nur leider nicht wie der erste Teil gemeint ist:
> "As a function of the initial terms..."
> Heißt das, jedes Anfangsglied wird als Funktion
> betrachtet oder heißt das wir betrachten eine Funktion
> abhängig von den Anfangswerten?
Das zweite: "wir betrachten eine Funktion abhängig von den Anfangswerten"
Allgemein:
[mm] $y_{k+n}= F(y_0\ [/mm] , [mm] \dots\ ,y_{n-1} [/mm] ) $
Wobei für k=0 $ [mm] F(y_0\ [/mm] , [mm] \dots\ ,y_{n-1} [/mm] ) = [mm] \frac{\alpha y_{p}y_{n-p}+\beta y_{q}y_{n-q}+ \gamma y_{r}y_{n-r}}{y_0} [/mm] $
und für k > 0 , die angebene Rekurssion wiederholt angewandt werden muss.
>
> Weiter würde ich das so verstehen, dass dann jedes
> Folgeglied der Sequenz ein Laurent Polynom mit
> Koeffizienten aus dem Polynomring [mm]\mathbb{Z}[\alpha, \beta, \gamma][/mm]
> ist.
Ja, ok.
>
> Irgendwie komm ich mit dem Polynomring nicht ganz klar. Wie
> sehe das denn aus? Ich weiß leider nicht wie ich da am
> besten Googlen könnte.
Vielleicht nach "Laurentpolynom in mehreren Veränderlichen"
>
> Ich hoffe ihr könnt mir helfen, vllt wäre ein Beispiel
> schon nützlich genug. Nur da ich den ersten Teil schon
> nich verstehe, krieg ich auch kein Beispiel konstruiert.
>
> Vielen Dank und liebe Grüße
> Highchiller
Gruß
meili
|
|
|
|
|
> Irgendwie komm ich mit dem Polynomring nicht ganz klar. Wie
> sehe das denn aus?
Ein Laurentpolynom in den Variablen [mm] $A_1,\dots,A_n$ [/mm] mit Koeffizienten in [mm] $R[B_1,\dots,B_m]$ [/mm] ist einfach ein Element der $R$-Algebra [mm] $R[A_1,A_1^{-1},\dots,A_n,A_n^{-1},B_1,\dots,B_m]$, [/mm] also die freie kommutative $R$-Algebra über [mm] $\{A_1,A_1^{-1},\dots,A_n,A_n^{-1},B_1,\dots,B_m\}$, [/mm] wobei die Relationen [mm] $A_iA_i^{-1}=1$ [/mm] herausgeteilt werden.
Liebe Grüße,
UniversellesObjekt
|
|
|
|