matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenGLS & inv. Koeffizientenmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - GLS & inv. Koeffizientenmatrix
GLS & inv. Koeffizientenmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

GLS & inv. Koeffizientenmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:44 Do 03.12.2009
Autor: shaker.fish

Aufgabe
Durch Zufuhr von Wasserdampf [mm] (H_{2}O) [/mm] und Energie lässt sich Methan [mm] (CH_{4}) [/mm] in Wasserstoff [mm] (H_{2}) [/mm] und Kohlenmonoxid (CO) aufspalten. Stellen Sie ein lineares Gleichungssystem für diese Reaktion auf, schreiben Sie es in der Form [mm] A\vec{x} [/mm] = [mm] \vec{b} [/mm] und lösen Sie dieses GLS, indem Sie die Inverse der Koeffizientenmatrix A berechnen.

Guten Tag :)
Die Aufgabenstellung ist zwar eher im biologisch-chemischen Bereich, aber ich hoffe trotzallem, dass mir jemand helfen kann.

Das lineare GLS habe ich wie folgt aufgestellt:
[mm] H_{2}0 [/mm] + [mm] a*CH_{4} [/mm] = [mm] b*H_{2} [/mm] + c*CO
Daraus folgt ja für die einzelnen Elemente:
H: 2+4a = 2b
O: 1 = 1c
C: 1a = 1c
Das GLS kann also nun schon gelöst werden (a=1, b=3, c=1).

Meine Frage ist nun, wie kann ich dieses GLS in die Form [mm] A\vec{x} [/mm] = [mm] \vec{b} [/mm] umschreiben?

Ich hoffe meine Rechnung war bis hier verständlich ;)
Danke euch und einen schönen Tag noch,
Ray

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
GLS & inv. Koeffizientenmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Do 03.12.2009
Autor: glie


> Durch Zufuhr von Wasserdampf [mm](H_{2}O)[/mm] und Energie lässt
> sich Methan [mm](CH_{4})[/mm] in Wasserstoff [mm](H_{2})[/mm] und
> Kohlenmonoxid (CO) aufspalten. Stellen Sie ein lineares
> Gleichungssystem für diese Reaktion auf, schreiben Sie es
> in der Form [mm]A\vec{x}[/mm] = [mm]\vec{b}[/mm] und lösen Sie dieses GLS,
> indem Sie die Inverse der Koeffizientenmatrix A berechnen.
>  Guten Tag :)
>  Die Aufgabenstellung ist zwar eher im
> biologisch-chemischen Bereich, aber ich hoffe trotzallem,
> dass mir jemand helfen kann.
>  
> Das lineare GLS habe ich wie folgt aufgestellt:
>  [mm]H_{2}0[/mm] + [mm]a*CH_{4}[/mm] = [mm]b*H_{2}[/mm] + c*CO
>  Daraus folgt ja für die einzelnen Elemente:
>  H: 2+4a = 2b
>  O: 1 = 1c
>  C: 1a = 1c
>  Das GLS kann also nun schon gelöst werden (a=1, b=3,
> c=1).
>  
> Meine Frage ist nun, wie kann ich dieses GLS in die Form
> [mm]A\vec{x}[/mm] = [mm]\vec{b}[/mm] umschreiben?

Hallo und herzlich [willkommenmr]


nehmen wir deine Reaktionsgleichung, die kannst du ja allgemein auch so schreiben:

[mm] $x_1*H_2O+x_2*CH_4 \to x_3*H_2+x_4*CO$ [/mm]

Betrachten wir jetzt die einzelnen Elemente, so erhalten wir die folgenden 3 Gleichungen:

[mm] $2x_1+4x_2-2x_3=0$ [/mm] (H)
[mm] $x_1-x_4=0$ [/mm]  (O)
[mm] $x_2-x_4=0$ [/mm]  (C)

In der Schreibweise [mm] $A*\vec{x}=\vec{b}$ [/mm] wäre das dann:

[mm] $\pmat{ 2 & 4 & -2 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 }*\vektor{x_1 \\ x_2 \\ x_3 \\ x_4}=\vektor{0 \\ 0 \\ 0}$ [/mm]

Gibt übrigens unendlich viele Lösungen, du kannst ja auch

[mm] $5H_2O+5CH_4 \to 15H_2+5CO$ [/mm]

reagieren lassen.

Gruß Glie


EDIT:
Sehe gerade, dass du das mit der inversen Matrix von A berechnen sollst.
Nun, dann sollte die Matrix quadratisch sein.
Dann ist es wohl besser, [mm] $x_1=1$ [/mm] zu setzen und nur mit drei Unbekannten zu arbeiten, dann bekommst du eben drei Gleichungen für die drei Unbekannten [mm] $x_2,x_3 [/mm] und [mm] x_4$. [/mm]


>  
> Ich hoffe meine Rechnung war bis hier verständlich ;)
>  Danke euch und einen schönen Tag noch,
> Ray
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]