matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesFunktionsuntersuchung: Betrag
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Funktionsuntersuchung: Betrag
Funktionsuntersuchung: Betrag < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsuntersuchung: Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Mo 15.02.2010
Autor: zitrone

Hallo,

ich bearbeite momentan in der Schule das Thema: Funktionsuntersuchung. Diesmal untersuchen wir Betragsfunktionen.
Dazu hab ich die Funktion [mm] f(x)=|9-x^2| [/mm] bekommen.
Im Arbeitsauftrag steht, dass ich den Funktionsterm zuerst ohne Verwendung des Betragszeichen aufschreiben soll. Dann soll ich anschliessend eine Funktionsuntersuchung durchfuehren.

Also soll ich die Funktion wie f(x)= [mm] 9-x^2 [/mm] behandeln?
Was wuede  mir das denn bringen?

Wie untersuche ich denn eigentlich Betragsfunktionen?
Koennte mir da bitte jemand helfen?

lg zitrone

        
Bezug
Funktionsuntersuchung: Betrag: Teilbereiche
Status: (Antwort) fertig Status 
Datum: 21:19 Mo 15.02.2010
Autor: Loddar

Hallo zitrone!


Die Definition der Betragsfunktion ist Dir aber bekannt, oder?

$$|z| \ := \ [mm] \begin{cases} -z, & \mbox{für } z<0 \mbox{ } \\ +z, & \mbox{für } z\ge 0 \mbox{ } \end{cases}$$ [/mm]

Damit kannst Du auch Deine gegebene Funktion betragsfrei formulieren und die Kurvendiskussion wie gewohnt durchführen.

Für welche Bereche gilt nun [mm] $9-x^2 [/mm] \ [mm] \ge [/mm] \ 0$ bzw. [mm] $9-x^2 [/mm] \ < \ 0$ ?

Aufpassen musst Du dann jeweils an den "Nahtstellen"; also genau die Bereiche mit [mm] $9-x^2 [/mm] \ [mm] \red{=} [/mm] \ 0$ .


Gruß
Loddar


Bezug
                
Bezug
Funktionsuntersuchung: Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Mo 15.02.2010
Autor: zitrone

Guten Abend!

Vielen dank fuer die Antwort.
Also heisst das, dass ich dann zwei Funktionen haben werde, naemlich fuer
  |z| \ := \ [mm] \begin{cases} -z, & \mbox{für } z<0 \mbox{ } \\ +z, & \mbox{für } z\ge 0 \mbox{ } \end{cases} [/mm]


Also dann fuer +x waere es: [mm] x^2-9 [/mm]

und fuer -x waere es: 9- [mm] (x)^2 [/mm]

Dann von beiden die Funktionsuntersuchung durchfuehren.
Hab ich das so richtig verstanden?

lg zitrone

Bezug
                        
Bezug
Funktionsuntersuchung: Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Mo 15.02.2010
Autor: leduart

Hallo
So ist es falsch. du betrachtest ja nicht |x| sondern [mm] |9-x^2| [/mm]
wenn der Ausdruck in den Absolutstrichen negativ wird, an der Stelle musst du umdrehen.
kannst du  den graphen  von [mm] 9-x^2 [/mm] aufzeichnen (Skizze)
dann musst du alles, was unter der x-Achse ist, an der x-Achse nach oben spiegeln, (denn der Betrag ist ja immer positiv) und hast dann den Graphen von [mm] |9-x^2| [/mm]
der hat dann an der Stelle [mm] 9-x^2=0 [/mm] Ecken
Gruss leduart

Bezug
                                
Bezug
Funktionsuntersuchung: Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Di 16.02.2010
Autor: zitrone

Hallo,

vielen dank!^^

Ok, das müsst ich jetzt verstanden haben. Also reicht es nur aus zu sehen, wo der Graph seine Nullstellen hat(der Berecih, in der er ins negative übergeht)?

Bei dieser Funktion z.B. [mm] x^3+|x| [/mm] ensteht beim weglassen des Betragsstriches ein Sattelpunkt. Ich hab mal die Betragsfunktion in einen Graphikzeichner einegtippt und hatten ploetzlich keinen Knick...Wie ist das denn jetzt zu erklaeren?

lg zitrone

Bezug
                                        
Bezug
Funktionsuntersuchung: Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Di 16.02.2010
Autor: abakus


> Hallo,
>  
> vielen dank!^^
>  
> Ok, das müsst ich jetzt verstanden haben. Also reicht es
> nur aus zu sehen, wo der Graph seine Nullstellen hat(der
> Berecih, in der er ins negative übergeht)?
>  
> Bei dieser Funktion z.B. [mm]x^3+|x|[/mm] ensteht beim weglassen des
> Betragsstriches ein Sattelpunkt. Ich hab mal die
> Betragsfunktion in einen Graphikzeichner einegtippt und
> hatten ploetzlich keinen Knick...Wie ist das denn jetzt zu
> erklaeren?
>  
> lg zitrone

Hallo,
der genannte Funktionsterm entspricht
[mm] x^3+x [/mm] für x>0 und
[mm] x^3-x [/mm] für x<0.
Und an der Stelle x=0 IST ein Knick:
[Dateianhang nicht öffentlich]
Gruß Abakus


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]