matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenFunktionsuntersuchung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Funktionsuntersuchung
Funktionsuntersuchung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:19 Do 08.10.2009
Autor: matherein

Aufgabe
Untersuchen Sie die trigonometrische Funktion f mit f(x) = [mm] 3sin(2x-\bruch{\pi}{2}) [/mm] auf einem geeigneten Intervall.

Hallo an alle Forenmitglieder,

Als Antwort steht im Lösungsbuch:
1. Periodenlänge:
Sie Sinusfunktion hat die Periodenlänge [mm] 2\pi; x_{1} [/mm] und [mm] x_{2} [/mm] markieren Anfang und Ende einer Periode, wenn gilt: [mm] 2x_{1}-\bruch{\pi}{2}=0 [/mm] und [mm] 2x_{2}-\bruch{\pi}{2}=2\pi. [/mm] Wie komme ich auf die Bedingung [mm] 2x_{1}-\bruch{\pi}{2}=0 [/mm] und [mm] 2x_{2}-\bruch{\pi}{2}=2\pi? [/mm]
Mit [mm] x_{1}=\bruch{1}{4}\pi [/mm] und [mm] x_{2}=\bruch{5}{4}\pi [/mm] ergibt sich die Periodenlänge p = [mm] x_{2}-x_{1}=\pi. [/mm] Es genügt also, f auf dem Intervall [mm] [0;\pi) [/mm] zu untersuchen.

2. Nullstellen:
[mm] 3sin(2x-\bruch{\pi}{2})=0 [/mm] ist erfüllt für alle x [mm] \in \IR [/mm] mit [mm] 2x-\bruch{\pi}{2}=k\pi [/mm] bzw. x= [mm] (2k+1)\bruch{\pi}{4} [/mm] (k [mm] \in \IZ). [/mm] Im Intervall [mm] [0;\pi) [/mm] liegen also die Nullstellen [mm] x_{1}=\bruch{1}{4}\pi [/mm] und [mm] x_{3}=\bruch{3}{4}\pi. [/mm]
Hier weiß ich nicht nur nicht wie man auf die Bedingung kommt, sondern auch auf x= [mm] (2k+1)\bruch{\pi}{4} [/mm] und [mm] x_{1}=\bruch{1}{4}\pi [/mm] und [mm] x_{3}=\bruch{3}{4}\pi. [/mm]

Danke im Voraus für die Mühe
matherein

        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:10 Do 08.10.2009
Autor: ChopSuey

Hi matherein,

> Untersuchen Sie die trigonometrische Funktion f mit f(x) =
> [mm]3sin(2x-\bruch{\pi}{2})[/mm] auf einem geeigneten Intervall.
>  Hallo an alle Forenmitglieder,
>  
> Als Antwort steht im Lösungsbuch:
> 1. Periodenlänge:
> Sie Sinusfunktion hat die Periodenlänge [mm]2\pi; x_{1}[/mm] und
> [mm]x_{2}[/mm] markieren Anfang und Ende einer Periode, wenn gilt:
> [mm]2x_{1}-\bruch{\pi}{2}=0[/mm] und [mm]2x_{2}-\bruch{\pi}{2}=2\pi.[/mm] Wie
> komme ich auf die Bedingung [mm]2x_{1}-\bruch{\pi}{2}=0[/mm] und
> [mm]2x_{2}-\bruch{\pi}{2}=2\pi?[/mm]

Für $\ f(x) = [mm] \sin(x) [/mm] $ sind die Intervallränder von $\ [mm] [0,2\pi)$ [/mm] offensichtlich $\ [mm] x_1 [/mm] = 0$, $\ [mm] x_2 [/mm] = [mm] 2\pi$ [/mm]

Hier geht es um die Funktion $\ f(x) = [mm] 3\sin(2x-\frac{\pi}{2}) [/mm] $

Du kannst Substituieren mit $\ z = [mm] 2x-\frac{\pi}{2}$ [/mm] und erhältst

$\ f(z) = [mm] 3\sin(z) [/mm] $.

Im Intervall $\ [0, [mm] 2\pi)$ [/mm] sind die Intervallränder nun $\ [mm] z_1 [/mm] = 0$, $\ [mm] z_2 [/mm] = [mm] 2\pi$ [/mm]

Durch Rücksubstitution erhältst Du $\ [mm] z_1 [/mm] = [mm] 2x_1-\frac{\pi}{2} [/mm] $ und $\ [mm] z_2 =x_2-\frac{\pi}{2} [/mm] $

$\ [mm] z_1 [/mm] = 0 [mm] \gdw 2x_1-\frac{\pi}{2} [/mm] = 0$

$\ [mm] z_2 [/mm] = 0 [mm] \gdw 2x_2-\frac{\pi}{2} [/mm] = 0$

>  Mit [mm]x_{1}=\bruch{1}{4}\pi[/mm] und [mm]x_{2}=\bruch{5}{4}\pi[/mm] ergibt
> sich die Periodenlänge p = [mm]x_{2}-x_{1}=\pi.[/mm] Es genügt
> also, f auf dem Intervall [mm][0;\pi)[/mm] zu untersuchen.
>
> 2. Nullstellen:
> [mm]3sin(2x-\bruch{\pi}{2})=0[/mm] ist erfüllt für alle x [mm]\in \IR[/mm]
> mit [mm]2x-\bruch{\pi}{2}=k\pi[/mm] bzw. x= [mm](2k+1)\bruch{\pi}{4}[/mm] (k
> [mm]\in \IZ).[/mm] Im Intervall [mm][0;\pi)[/mm] liegen also die Nullstellen
> [mm]x_{1}=\bruch{1}{4}\pi[/mm] und [mm]x_{3}=\bruch{3}{4}\pi.[/mm]
> Hier weiß ich nicht nur nicht wie man auf die Bedingung
> kommt, sondern auch auf x= [mm](2k+1)\bruch{\pi}{4}[/mm] und
> [mm]x_{1}=\bruch{1}{4}\pi[/mm] und [mm]x_{3}=\bruch{3}{4}\pi.[/mm]

Wir schauen uns zunächst wieder $\ f(x) [mm] =\sin(x) [/mm] $ an und wissen, dass die Nullstellen immer 0 und dann ganzzahlige Vielfache von $\ [mm] \pi [/mm] $ sind.

Also $\ f(x) = [mm] \sin(x) [/mm] = 0$ mit [mm] $x_k [/mm] = 0, [mm] \pi, 2\pi, 3\pi,... [/mm] $

Ist ein Intervall wie $\ [0, [mm] \pi)$ [/mm] gegeben, so finden wir hier nur die ersten beiden Nullstellen mit $\ [mm] x_1 [/mm] = 0$ und $\ [mm] x_2 [/mm] = [mm] \pi$ [/mm]

Allerdings haben wir erneut die die Funktion [mm] f(x)=3sin(2x-\bruch{\pi}{2}) [/mm] und subsitutieren $\ z = [mm] 2x-\bruch{\pi}{2}$ [/mm]

Das ist im Grunde das selbe, wie oben.

$\ f(z) = 0 [mm] \gdw 2x_1-\bruch{\pi}{2} [/mm] = 0\ [mm] \wedge [/mm] \ [mm] 2x_2-\bruch{\pi}{2} =\pi [/mm] $

1. Nullstelle

$\  [mm] 2x_1-\bruch{\pi}{2} [/mm] = 0 [mm] \gdw 2x_1 [/mm] = [mm] \bruch{\pi}{2} \gdw x_1 [/mm] = [mm] \bruch{\pi}{2}:\frac{2}{1} \gdw x_1 [/mm] = [mm] \bruch{\pi}{2}*\frac{1}{2} \gdw x_1 [/mm] = [mm] \bruch{\pi}{4} [/mm] = [mm] \bruch{1}{4}\pi [/mm]  $

2. Nullstelle

$\ [mm] 2x_2-\bruch{\pi}{2} =\pi \gdw 2x_2 =\pi +\bruch{\pi}{2} \gdw 2x_2 =\frac{\pi}{1} +\bruch{\pi}{2} \gdw 2x_2 =\frac{2\pi}{2} +\bruch{\pi}{2}\gdw 2x_2 =\frac{3\pi}{2} \gdw x_2 =\frac{3\pi}{2}:\frac{2}{1}\gdw x_2 =\frac{3\pi}{2}*\frac{1}{2} \gdw x_2 =\frac{3\pi}{4} [/mm] = [mm] \frac{3}{4}\pi$ [/mm]

>  
> Danke im Voraus für die Mühe
>  matherein

Hoffe, dass dir das hilft. Frag ruhig, wenn was unklar sein sollte.

Grüße
ChopSuey

Bezug
                
Bezug
Funktionsuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Do 08.10.2009
Autor: matherein

Guten Abend ChopSuey,

vielen Dank für die ausführliche Erklärung. Ich konnte alles gut nachvollziehen!

LG
matherein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]