matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungFunktionsterm eines Halbkreise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Funktionsterm eines Halbkreise
Funktionsterm eines Halbkreise < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsterm eines Halbkreise: Frage?
Status: (Frage) beantwortet Status 
Datum: 14:51 Mo 12.10.2009
Autor: Schneggelsche

Aufgabe
a) Welche Funktion f hat als Graphen einen Halbkreis mit Radius r?
b) Einem Halbkreis mit Radius r=3cm wird ein zur y-Achse symmetrisches Rechteck einbeschrieben. Betrachtet wird die Funktion A, die jedem x den Flächeninhalt A(x) des Rechtecks zuordnet.
Geben Sie die Zuordnung für A an.
Ermitteln Sie zunächst mit dem grafikfähigen Taschenrechner den Wert von x, für den der Flächeninhalt des einbeschriebenen Rechtecks maximal wird.
Wie gehen Sie vor, um ohne GTR diesen Wert von x zu ermitteln? Führen Sie diese Rechnung durch.

zu a)
Wie komme ich auf f(x) = Wurzel(r²-x²)? Hat das irgendetwas mit dem Satz des Pythagoras zu tun? Weil laut Satz des Pythagoras wäre r²=Wurzel(x²+y²) oder?
zu b)
A(x)=x*y*2, dann käme ich auf die Fläche des Rechtecks, aber dann habe ich 2 Variable...

        
Bezug
Funktionsterm eines Halbkreise: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Mo 12.10.2009
Autor: fred97


> a) Welche Funktion f hat als Graphen einen Halbkreis mit
> Radius r?
>  b) Einem Halbkreis mit Radius r=3cm wird ein zur y-Achse
> symmetrisches Rechteck einbeschrieben. Betrachtet wird die
> Funktion A, die jedem x den Flächeninhalt A(x) des
> Rechtecks zuordnet.
>  Geben Sie die Zuordnung für A an.
>  Ermitteln Sie zunächst mit dem grafikfähigen
> Taschenrechner den Wert von x, für den der Flächeninhalt
> des einbeschriebenen Rechtecks maximal wird.
>  Wie gehen Sie vor, um ohne GTR diesen Wert von x zu
> ermitteln? Führen Sie diese Rechnung durch.
>  zu a)
>  Wie komme ich auf f(x) = Wurzel(r²-x²)? Hat das
> irgendetwas mit dem Satz des Pythagoras zu tun? Weil laut
> Satz des Pythagoras wäre r²=Wurzel(x²+y²) oder?

Das r²=Wurzel(x²+y²)  ist nicht richtig. Richtig: [mm] $x^2+y^2 [/mm] = [mm] r^2$. [/mm]

Wenn Du das nach y auflöst, erhälst Du y = [mm] \pm \wurzel{r^2-x^2} [/mm]




>  zu b)
>  A(x)=x*y*2, dann käme ich auf die Fläche des Rechtecks,

Richtig!



> aber dann habe ich 2 Variable...


Es ist doch f(x) =  y = [mm] \wurzel{r^2-x^2} [/mm]  !!


Dann hast Du $A(x) = [mm] 2x*\wurzel{r^2-x^2} [/mm] $


FRED

Bezug
                
Bezug
Funktionsterm eines Halbkreise: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Mo 12.10.2009
Autor: Schneggelsche

Dann versuche ich das mal so! Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]