matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFunktionsterm bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ganzrationale Funktionen" - Funktionsterm bestimmen
Funktionsterm bestimmen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsterm bestimmen: A(0|0) zulässig?
Status: (Frage) beantwortet Status 
Datum: 11:39 So 15.04.2007
Autor: T-MysTiC

Aufgabe
Bestimmen Sie den Funktionsterm von f mit Hilfe der Zeichnung.

Aus der Zeichnug kann ich die folgenden Punkte entnehmen:
A(0|0);B(1|2);C(2|1);D(3|0)

A: 0=d
B: 2=a+b+c+d     => 2=a+b+c
C: 1=8a+4b+2c+d  => 1=8a+4b+2c
D: 0=27a+9b+3c+d => 0=27a+9b+3c

a  b  c
-----------
1  0  0 0,5 => a= 0,5
0  1  0 -3  => b= -3
0  0  1 4,5 => c= 4,5

f(x)= [mm] \bruch{1}{2} x^3-3x^2+\bruch{9}{2}x [/mm] |*2
f(x)= [mm] x^3-6x^2+9x [/mm]

Hoffentlich nerve ich mit meinen Fragen nicht.
Bei dieser Aufgabe bin ich mir mit dem Punkt A nicht sicher. Erhält man eine richtige Lösung wenn man mit A(0|0) berechnet? Vielen Dank für eure Mühe!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionsterm bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 So 15.04.2007
Autor: ONeill

Ja mit A (0/0) zu rechnen ist durchaus zulässig!
Habe deine Lösung zwar jetzt nicht im Einzelnen nochmal nachgerechnet, aber der Weg ist auf jeden Fall richtig.

Bezug
        
Bezug
Funktionsterm bestimmen: Fkt nicht multiplizieren!
Status: (Antwort) fertig Status 
Datum: 11:58 So 15.04.2007
Autor: XPatrickX


> Bestimmen Sie den Funktionsterm von f mit Hilfe der
> Zeichnung.
>  Aus der Zeichnug kann ich die folgenden Punkte entnehmen:
>  A(0|0);B(1|2);C(2|1);D(3|0)
>  
> A: 0=d
>  B: 2=a+b+c+d     => 2=a+b+c

>  C: 1=8a+4b+2c+d  => 1=8a+4b+2c

>  D: 0=27a+9b+3c+d => 0=27a+9b+3c

>  
> a  b  c
>  -----------
>  1  0  0 0,5 => a= 0,5

>  0  1  0 -3  => b= -3

>  0  0  1 4,5 => c= 4,5

>  
> f(x)= [mm]\bruch{1}{2} x^3-3x^2+\bruch{9}{2}x[/mm] |*2
>  f(x)= [mm]x^3-6x^2+9x[/mm]
>  

Hey, das sind aber zwei komplett unterschiedliche Funktionen! Du darfst Funktionszuschriften nicht einfach multiplizieren. Das darf man nur mit Gleichungen.
Wenn du die Gleichung mit 2 mal nimmst, würde die zweite Zeile so aussehen: 2[mm]f(x)= x^3-6x^2+9x[/mm]

Gruß Patrick

> Hoffentlich nerve ich mit meinen Fragen nicht.
>  Bei dieser Aufgabe bin ich mir mit dem Punkt A nicht
> sicher. Erhält man eine richtige Lösung wenn man mit A(0|0)
> berechnet? Vielen Dank für eure Mühe!!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]