matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFunktionssynthese
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Funktionssynthese
Funktionssynthese < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionssynthese: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 07:36 Mo 01.03.2010
Autor: Jonny-Phil

Aufgabe
Eine kleine Firma stellt Ablaugemittel her. Für die Kosten der Herstellung wurde ermittelt:
x in Liter                 y Kosten in Euro
0                             100
100                         240
300                         400
500                        1200

a) Bestimmen Sie die ganzrationale Funktion 3. Grades zur Beschreibung der Kosten.
b) Der Literpreis soll 4,85 Euro betragen. Bestimmen sie der Erlösfunktion sowie Gewinnschwelle und -grenze.
c) Ermitteln Sie die Gewinnfunktion und das Gewinnmaximum.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Lösungsanfang von mir:
a) [mm] K(x)=ax^3+bx^2+cx+d [/mm]
[mm] K(0)=a*0^3+b*0^2+c*0+d=100 [/mm] -> d=100
K(100)=1.000.000a+10.000b+100c+100=240 /-100
K(100)=1.000.000a+10.000b+100c= 140
K(300)=27.000.000a+90.000b+300c=300
K(500)=125.000.000a+250.000b+500c=1100
lt. Taschenrechner
a = 2,25
b = -0,01
c = 2,58

[mm] K(x)=2,25x^3-0,01x^2+2,58x+100 [/mm]

b) E(x)=4,85x
[mm] G(x)=4,85x+2,25x^3-0,01x^2+2,58x+100 [/mm]
[mm] G(x)=2,25x^3-0,01x^2+7,35x+100 [/mm]
[mm] 0=2,25x^3-0,01x^2+7,35x+100 [/mm] /:2,25
[mm] 0=x^3-1/225x^2+49/15x+400/9 [/mm] /-400/9
[mm] -400/9=x^3-1/225x^2+49/15x [/mm]

ab hier brauche ich ne kleine Hilfe, komme hier irgendwie nicht weiter...

        
Bezug
Funktionssynthese: Antwort
Status: (Antwort) fertig Status 
Datum: 08:10 Mo 01.03.2010
Autor: angela.h.b.


> Eine kleine Firma stellt Ablaugemittel her. Für die Kosten
> der Herstellung wurde ermittelt:
>  x in Liter                 y Kosten in Euro
>  0                             100
>  100                         240
>  300                         400
>  500                        1200
>  
> a) Bestimmen Sie die ganzrationale Funktion 3. Grades zur
> Beschreibung der Kosten.
>  b) Der Literpreis soll 4,85 Euro betragen. Bestimmen sie
> der Erlösfunktion sowie Gewinnschwelle und -grenze.
>  c) Ermitteln Sie die Gewinnfunktion und das
> Gewinnmaximum.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  Lösungsanfang von mir:
>  a) [mm]K(x)=ax^3+bx^2+cx+d[/mm]
>  [mm]K(0)=a*0^3+b*0^2+c*0+d=100[/mm] -> d=100

>  K(100)=1.000.000a+10.000b+100c+100=240 /-100
>  [mm] K(100)\red{-100}=1.000.000a+10.000b+100c= [/mm] 140
>  [mm] K(300)\red{-100}=27.000.000a+90.000b+300c\red=300 [/mm]
>  [mm] K(500)\red{-100}=125.000.000a+250.000b+500c=1100 [/mm]
>  lt. Taschenrechner
>  a = 2,25
>  b = -0,01
>  c = 2,58

Hallo,

[willkommenmr].

>  
> [mm]K(x)=2,25x^3-0,01x^2+2,58x+100[/mm]

Daß dies nicht stimmen kann, siehst Du, wenn Du es mal plottest.
Wahrscheinlich hast Du den TR falsch gefüttert.

>  
> b) E(x)=4,85x

Richtig.

>  [mm]G(x)=4,85x+2,25x^3-0,01x^2+2,58x+100[/mm]

Das ist falsch. Bei Dir ist G=E+K.

Es ist aber G=E-K.

>  [mm]G(x)=2,25x^3-0,01x^2+7,35x+100[/mm]
>  [mm]0=2,25x^3-0,01x^2+7,35x+100[/mm] /:2,25
>  [mm]0=x^3-1/225x^2+49/15x+400/9[/mm] /-400/9
>  [mm]-400/9=x^3-1/225x^2+49/15x[/mm]
>  
> ab hier brauche ich ne kleine Hilfe, komme hier irgendwie
> nicht weiter...

Wahrscheinlich läuft's mit der richtigen Gewinnfunktion besser.
Wenn nicht, schauen wir dann.

Gruß v. Angela


Bezug
                
Bezug
Funktionssynthese: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Mo 01.03.2010
Autor: Jonny-Phil

Alles klar, Danke
ich werde es heute Abend mal überarbeiten und falls ich dann wieder was habe, melde ich mich nochmal.
Aber DANKE

Bezug
        
Bezug
Funktionssynthese: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 07:30 Do 04.03.2010
Autor: Jonny-Phil

Aufgabe
Eine kleine Firma stellt Ablaugemittel her. Für die Kosten der Herstellung wurde ermittelt:
x in Liter                 y Kosten in Euro
0                             100
100                         240
300                         400
500                        1200

a) Bestimmen Sie die ganzrationale Funktion 3. Grades zur Beschreibung der Kosten.
b) Der Literpreis soll 4,85 Euro betragen. Bestimmen sie der Erlösfunktion sowie Gewinnschwelle und -grenze.
c) Ermitteln Sie die Gewinnfunktion und das Gewinnmaximum.

a) Ich kriege irgendwie nicht die richtige Kostenfunktion raus, und kann somit auch nicht die anderen aufgaben lösen. Kann mir bitte jemand helfen? Irgendwie stehe ich total auf dem Schlauch....


Bezug
                
Bezug
Funktionssynthese: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Do 04.03.2010
Autor: angela.h.b.


> Eine kleine Firma stellt Ablaugemittel her. Für die Kosten
> der Herstellung wurde ermittelt:
>  x in Liter                 y Kosten in Euro
>  0                             100
>  100                         240
>  300                         400
>  500                        1200
>  
> a) Bestimmen Sie die ganzrationale Funktion 3. Grades zur
> Beschreibung der Kosten.
>  b) Der Literpreis soll 4,85 Euro betragen. Bestimmen sie
> der Erlösfunktion sowie Gewinnschwelle und -grenze.
>  c) Ermitteln Sie die Gewinnfunktion und das Gewinnmaximum.
>
> a) Ich kriege irgendwie nicht die richtige Kostenfunktion
> raus, und kann somit auch nicht die anderen aufgaben
> lösen. Kann mir bitte jemand helfen? Irgendwie stehe ich
> total auf dem Schlauch....

Hallo,

auf welchem Schlauch denn? Also: was hast Du jetzt getan?

Du hattest ja das völlig richtige Gleichungssystem

d=100
1.000.000a+10.000b+100c= 140
27.000.000a+90.000b+300c=300
125.000.000a+250.000b+500c=1100

Wenn Du nun möglicherweise mit Deinem Taschenrechner nicht umgehen kannst, löse es halt per Hand -
Solange Du nicht genauer sagst, wo das Problem liegt kann man schlecht helfen...

(Die richtige Lösung ist [mm] K(x)=0.00002x^3-0.01x^2+2.2x+100) [/mm]

Griuß v. Angela


  


Bezug
                        
Bezug
Funktionssynthese: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:28 Do 04.03.2010
Autor: Jonny-Phil

Ich kann eigentlich ganz gut mit dem Taschenrechner umgehen, aber irgendwie gibt er mir diesmal die komischen Zahlen. Und leider habe ich nicht immer soviel Zeit, mit damit genauer mit dem Taschenrechner zu befassen, da ich Vollzeit arbeite und nebenbei in Abendform noch Abi mache.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]