matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungFunktionssynthese
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Funktionssynthese
Funktionssynthese < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionssynthese: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 19:23 So 21.02.2010
Autor: Jonny-Phil

Aufgabe
Die Fixkosten einer Firma bei der Herstellung des Produktes betragen 3 Geldeinheiten. Die variablen Kosten für die Herstellung von x Mengeneinheiten beschreibt die Funktion [mm] Kv(x)=0,3x^2-1,2x. [/mm] Pro Mengeneinheit wird ein Erlös von 2 Geldeinheiten gemacht
1. Kostenfunktion
2. Erlösfunktion
3. Gewinnfunktion, Nutzenschwelle und Nutzengrenze
4. gewinnmaximale Stückzahl und maximalen Gewinn

Lösungsanfang von mir:
1. K(x)= Kv(x) + Kf
Kf=3
[mm] K(x)=0,3x^2-1,2x+3 [/mm]

2. E(x)=2 ???
Ab hier benötige ich Hilfe

Vielen Dank  

Zu Aufgabe 1
3. Gewinnfunktion, Nutzenschwelle und Nutzengrenze
4. gewinnmaximale Stückzahl und maximalen Gewinn

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionssynthese: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 So 21.02.2010
Autor: steppenhahn

Hallo,

> Die Fixkosten einer Firma bei der Herstellung des Produktes
> betragen 3 Geldeinheiten. Die variablen Kosten für die
> Herstellung von x Mengeneinheiten beschreibt die Funktion
> [mm]Kv(x)=0,3x^2-1,2x.[/mm] Pro Mengeneinheit wird ein Erlös von 2
> Geldeinheiten gemacht
>  1. Kostenfunktion
>  2. Erlösfunktion
>  3. Gewinnfunktion, Nutzenschwelle und Nutzengrenze
>  4. gewinnmaximale Stückzahl und maximalen Gewinn
>  
> Lösungsanfang von mir:
>  1. K(x)= Kv(x) + Kf
>  Kf=3
>  [mm]K(x)=0,3x^2-1,2x+3[/mm]

Würde ich sagen, ist richtig :-) [ok]

> 2. E(x)=2 ???

Nein. Da steht in der Aufgabenstellung: "Pro Mengeneinheit (also pro "x") wird ein Erlös von 2 Geldeinheiten gemacht".
Also:

$E(x) = 2*x$

> Zu Aufgabe 1
>  3. Gewinnfunktion, Nutzenschwelle und Nutzengrenze

Der Gewinn G(x) ist die Differenz aus Erlösfunktion und Kostenfunktion (ist doch eigentlich logisch: Gewinn ist Erlös minus die Kosten, die ich dafür benötigt habe).

$G(x) = E(x) - K(x) = ausrechnen!$

Nutzenschwelle:

"Nutzen" liegt ja bloß vor, wenn der Gewinn größer als 0 ist. Um die "Schwelle" zum Gewinn zu finden, musst du also die Gewinnfunktion G(x) = 0 setzen. (Wir suchen also die Stellen x, wo der Übergang von Gewinn zu Verlust auftritt!).

Was jetzt genau "Nutzengrenze" und "Nutzenschwelle" unterscheidet, weißt du wahrscheinlich besser als ich.

>  4. gewinnmaximale Stückzahl und maximalen Gewinn

Deine Gewinnfunktion wird für ein bestimmtes x maximal, weil es sich bei G(x) um eine umgedrehte Parabel handelt. Dieser Wert ist bei "gewinnmaximale Stückzahl" gesucht.

Der maximale Gewinn ist dann einfach der Funktionswert G(x) an der Stelle x des maximalen Gewinns.


Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]