matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFunktionsstreckung (Andere Lö)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Funktionsstreckung (Andere Lö)
Funktionsstreckung (Andere Lö) < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsstreckung (Andere Lö): Alternativer Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 20:29 Sa 30.03.2013
Autor: junior_lawyher

Aufgabe
Gegeben ist die Funktion h mit [mm] h(x)=x^5-4x^4+6x^3-4x^2+x. [/mm]

Bestimmen Sie a so, dass das Schaubild mit der Gleichung y=a*h(x) die Gerade mit der Gleichung [mm] y=2^8 [/mm] berührt.

Zu der vorgegebenen Aufgabe habe ich folgende Lösung:

"Streckt man h so, dass der Hochpunkt den y-Wert [mm] 2^8 [/mm] bekommt, so berührt das neue Schaubild die Gerade mit der Gleichung [mm] y=2^8. [/mm] Laut grafischen Taschenrechner hat der Hochpunkt den y-Wert 0,08192. Daraus ergibt sich der Faktor [mm] 2^8/0,08192=3125." [/mm]

Dieser Lösungsweg ist mir nachvollziehbar. Allerdings bin ich auf Idee gekommen, einfach den neuen Hochpunkt H(0,08192 ; [mm] 2^8)einzusetzen. [/mm]

Also:
[mm] 2^8=x(0,08192^5-4*0,08192^4+6*0,08192^3-4*0,08192^2+0,08192 [/mm]

Dieser Weg führt nicht zum Ziel bzw. es kommt für x etwas mit fünzzehntausend irgendwas raus.

WESHALB haut meine Lösungsidee nicht hin ?






--------------------------------------------------------------------------------------------
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionsstreckung (Andere Lö): Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Sa 30.03.2013
Autor: abakus


> Gegeben ist die Funktion h mit [mm]h(x)=x^5-4x^4+6x^3-4x^2+x.[/mm]

>

> Bestimmen Sie a so, dass das Schaubild mit der Gleichung
> y=a*h(x) die Gerade mit der Gleichung [mm]y=2^8[/mm] berührt.
> Zu der vorgegebenen Aufgabe habe ich folgende Lösung:

>

> "Streckt man h so, dass der Hochpunkt den y-Wert [mm]2^8[/mm]
> bekommt, so berührt das neue Schaubild die Gerade mit der
> Gleichung [mm]y=2^8.[/mm] Laut grafischen Taschenrechner hat der
> Hochpunkt den y-Wert 0,08192. Daraus ergibt sich der Faktor
> [mm]2^8/0,08192=3125."[/mm]

>

> Dieser Lösungsweg ist mir nachvollziehbar. Allerdings bin
> ich auf Idee gekommen, einfach den neuen Hochpunkt
> H(0,08192 ; [mm]2^8)einzusetzen.[/mm]

>

> Also:

>

> [mm]2^8=x(0,08192^5-4*0,08192^4+6*0,08192^3-4*0,08192^2+0,08192[/mm]

>
Hallo,
dein "x" soll sicherlich der gesuchte Faktor a sein.
In die Gleichung darfst du nicht die y-Koordinate (also 0,08192) des bisherigen Hochpunktes einsetzen. Du brauchst die x-Koordinate des Hochpunktes.
Gruß Abakus


> Dieser Weg führt nicht zum Ziel bzw. es kommt für x etwas
> mit fünzzehntausend irgendwas raus.

>

> WESHALB haut meine Lösungsidee nicht hin ?

>
>
>
>
>
>

> --------------------------------------------------------------------------------------------
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
Funktionsstreckung (Andere Lö): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:25 So 31.03.2013
Autor: junior_lawyher

Vielen Dank für Antwort !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]