matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenFunktionsschar/ Flächen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Funktionsschar/ Flächen
Funktionsschar/ Flächen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsschar/ Flächen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:18 So 05.03.2006
Autor: Littleblondchen

Aufgabe
Funktionsschar fa mit fa(x)=10x*e^-ax²
Der Graf der Funktion f1, die x-Achse und eine Gerade mit der Gleichung x=s (s>o) begrenzen im 1. Quadranten eine Fläche. Berechne den Inhalt dieser Fläche in Abhängigkeit von s und gib für s=2 den Flächeninhalt an.

Der 2. Teil der Aufgabe ist klar. Wenn die Fläche mit der Geraden 2 begrenzt wird, kann man in das Integral die Grenzen einfach einsetzen, indem man die Schnittpunkte berechnet. Und die Gleichung kann man ganz einfach in eine "normle" Exponentialfunktion umwandeln. Sie lautet dann:
f(x)= 10x*e^-x²
Aber wie kann ich die Abhängigkeit angeben, denn ich habe dann ja keine Grenzen in dem Intervall angeben.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionsschar/ Flächen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 So 05.03.2006
Autor: Sigrid

Hallo Littleblondchen,

> Funktionsschar fa mit fa(x)=10x*e^-ax²
>  Der Graf der Funktion f1, die x-Achse und eine Gerade mit
> der Gleichung x=s (s>o) begrenzen im 1. Quadranten eine
> Fläche. Berechne den Inhalt dieser Fläche in Abhängigkeit
> von s und gib für s=2 den Flächeninhalt an.
>  Der 2. Teil der Aufgabe ist klar. Wenn die Fläche mit der
> Geraden 2 begrenzt wird, kann man in das Integral die
> Grenzen einfach einsetzen, indem man die Schnittpunkte
> berechnet. Und die Gleichung kann man ganz einfach in eine
> "normle" Exponentialfunktion umwandeln. Sie lautet dann:
>  f(x)= 10x*e^-x²

Das verstehe ich nicht ganz. Du brauchst doch keinen Schnittpunkt. Die erste Grenze ist x=0 (Nullstelle), die 2. Grenze ist x=s (bzw. x=2)

>  Aber wie kann ich die Abhängigkeit angeben, denn ich habe
> dann ja keine Grenzen in dem Intervall angeben.
>

Doch hast du. Die obere Grenze ist x=s. Also

[mm] A(s) = \integral_{0}^{s}{10x\ e^{-x^2} dx} [/mm]

Gruß
Sigrid


Bezug
                
Bezug
Funktionsschar/ Flächen: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:51 So 05.03.2006
Autor: Littleblondchen

Aber um den Flächeninhalt zu berechnen brauch ich die Schnittpunkte der Gerade s mit der Exponentialfunktion, ich kann den einen Schnittpunktdoch nicht einfach Null setzen. Die Gerade begrenzt dir Fläche und dafür brauch ich die allgemeinen Schnittpunkte. Je größer s wird umso kleiner wird doch dir Fläche, aber wie kann  ich das mathematische ausdrücken?  

Bezug
                        
Bezug
Funktionsschar/ Flächen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 So 05.03.2006
Autor: Disap

Hallo.

> Aber um den Flächeninhalt zu berechnen brauch ich die
> Schnittpunkte der Gerade s mit der Exponentialfunktion, ich
> kann den einen Schnittpunktdoch nicht einfach Null setzen.

Nein, du brauchst nur die Schnittstelle, d. h. du brauchst den X-Wert des Schnitts. Und du hast die Gerade x=s. Das ist eine senkrechte Gerade, also eine Parallele zur Y-Achse. Da die Gerade immer nur an der X-Stelle = s langläuft, kann es auch nur bei der Stelle x=s einen Schnittpunkt geben.

Daher kommt auch die obere Integralsgrenze s (Siehe Antwort von Sigrid). Daher musst du eben das s in die Stammfunktion als obere Integralsgrenze einsetzen - du bekommst ein Ergebnis in Abhängigkeit von s!

> Die Gerade begrenzt dir Fläche und dafür brauch ich die
> allgemeinen Schnittpunkte. Je größer s wird umso kleiner
> wird doch dir Fläche, aber wie kann ich das mathematische
> ausdrücken?

Wenn die Funktion für [mm] +\infty [/mm] gegen Null läuft, dürfte das gleich sein?...


mfG!
Disap

Bezug
                                
Bezug
Funktionsschar/ Flächen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 So 05.03.2006
Autor: Littleblondchen

Ok da hatte ich gerade einen riesen Denkfehler. Mensch die Gerade verläuft ja parallel zur y-Ache und nicht zur x-Ache, Wie konnte ich das nur verwechseln?

Vielen, vielen dank,
Jetzt wird mir die Aufgabe auch keine Probleme mehr bereiten.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]