matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenFunktionsschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Funktionsschar
Funktionsschar < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 So 27.11.2011
Autor: Amicus

Aufgabe
Gegeben ist die Funktionsschar [mm] f_{a}=\bruch{1}{a}x+1+\bruch{1}{x-1} [/mm] mit [mm] a\in \IR, a\not=0. [/mm]

a) Bestimme die Definitionsmenge [mm] D(f_{a}), [/mm] die Art der Definitionslücke und die Asymptote.

b) Untersuche [mm] f_{a} [/mm] auf Nullstellen und Extremstellen.

c)Berechne die Ortskurve g der lokalen Tiefpunkte!


zu a) [mm] D(f_{a})=\IR\not=1 [/mm]
Muss ich dann beim weiteren Bestimmen der Definitionslücken nur den Bruch am Ende betrachten, weil ja nur für ihn eine Definitionslücke vorliegt? Ich hab das so gemacht und bekomme dann eine nicht hebbare Definitionslücke 1.Ordnung (mit Vorzeichenwechsel) raus. Wie gehe ich dann vor, um die Asymptote zu bestimmen? Gleichnamig machen?

zu b)
[mm] N_{1}(1/0) N_{2}(4/0) [/mm]

[mm] X_{1}(0/0) X_{2}(2/4a) [/mm]
(ob es ein Hoch- oder Tiefpunkt ist hängt von a ab, deswegen muss man vorher eine Fallunterscheidung machen!)

zu c) bin ich momentan noch recht ratlos.

LG
Amicus          

        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 So 27.11.2011
Autor: M.Rex

Hallo


> Gegeben ist die Funktionsschar
> [mm]f_{a}=\bruch{1}{a}x+1+\bruch{1}{x-1}[/mm] mit [mm]a\in \IR, a\not=0.[/mm]
>  
> a) Bestimme die Definitionsmenge [mm]D(f_{a}),[/mm] die Art der
> Definitionslücke und die Asymptote.
>  
> b) Untersuche [mm]f_{a}[/mm] auf Nullstellen und Extremstellen.
>  
> c)Berechne die Ortskurve g der lokalen Tiefpunkte!
>  
> zu a) [mm]D(f_{a})=\IR\not=1[/mm]
>  Muss ich dann beim weiteren Bestimmen der
> Definitionslücken nur den Bruch am Ende betrachten, weil
> ja nur für ihn eine Definitionslücke vorliegt? Ich hab
> das so gemacht und bekomme dann eine nicht hebbare
> Definitionslücke 1.Ordnung (mit Vorzeichenwechsel) raus.

Es reicht, die 1 auszuschließen, und da nur die 1 einen Nenner des Bruches zu Null machen würde, ist das auch die einzige Definitionslücke.

> Wie gehe ich dann vor, um die Asymptote zu bestimmen?
> Gleichnamig machen?

Viel einfacher. Du kannst die Asymptote hier direkt ablesen, es ist der Teil der Funktion, der nicht gebrochen ist, also hier:
$ [mm] a(x)=\frac{1}{a}\cdot [/mm] x-1 $

>  
> zu b)
> [mm]N_{1}(1/0) N_{2}(4/0)[/mm]


x=1 ist eine Definitionslücke, kann also keine Nullstelle sein.

Eine Möglichkeit, die Nullstellen uzu ermitteln, wäre folgender Weg:

[mm] $0=\bruch{1}{a}x+1+\bruch{1}{x-1}$ [/mm]
[mm] $\Leftrightarrow-\bruch{1}{x-1}=\bruch{1}{a}x+1$ [/mm]
[mm] $\Leftrightarrow-1=\bruch{1}{a}x(x-1)+1(x-1)$ [/mm]
[mm] $\Leftrightarrow-1=\bruch{1}{a}x^{2}+\bruch{1}{a}x+x-1$ [/mm]
[mm] $\Leftrightarrow0=\bruch{1}{a}x^{2}+\bruch{1}{a}x+x$ [/mm]
[mm] $\Leftrightarrow0=\bruch{1}{a}x^{2}+\left(\bruch{1}{a}+1\right)x$ [/mm]
[mm] $\Leftrightarrow0=x\cdot\left(\bruch{1}{a}x+\bruch{1}{a}+1\right)$ [/mm]

Den Rest schaffst du jetzt.



>  
> [mm]X_{1}(0/0) X_{2}(2/4a)[/mm]
> (ob es ein Hoch- oder Tiefpunkt ist hängt von a ab,
> deswegen muss man vorher eine Fallunterscheidung machen!)

a>0 war Voraussetzung. Und um genauere Informationen zu erhalten, bräuchstes du noch ein hinreichnes Kriterium, also entweder das Vorzeichenwechselkriterium oder den Wert der 2. Ableitung.

[mm] $f_{a}(x)=\bruch{1}{a}x+1+\bruch{1}{x-1}$ [/mm]
[mm] $f_{a}'(x)=\bruch{1}{a}-\bruch{1}{(x-1)^{2}}$ [/mm]
[mm] $f_{a}'(x)=\bruch{2}{(x-1)^{3}}$ [/mm]

Also:

$ [mm] \bruch{1}{a}-\bruch{1}{(x-1)^{2}}=0 [/mm] $
$ [mm] \Leftrightarrow a=(x-1)^{2}=0 [/mm] $
$ [mm] \Leftrightarrow \pm\sqrt{a}=x-1 [/mm] $
$ [mm] \Leftrightarrow 1\pm\sqrt{a}=x [/mm] $

$ [mm] f_{a}''(1+\sqrt{a})=\bruch{2}{(1+\sqrt{a}-1)^{3}}=\frac{2}{(\sqrt{a})^{3}}>0 [/mm] $
$ [mm] f_{a}''(1-\sqrt{a})=\bruch{2}{(1-\sqrt{a}-1)^{3}}=\frac{2}{(-\sqrt{a})^{3}}<0 [/mm] $

Damit hast du wo die Tiefpunkte.
Berechne nun noch die y-Koordinaten der Extrempunkte mit:
[mm] f_{a}(1+\sqrt{a})=\ldots [/mm]
[mm] f_{a}(1-\sqrt{a})=\ldots [/mm]



>  
> zu c) bin ich momentan noch recht ratlos.

Lose die x-Koordinate des Tiefpunktes [mm] x=1+\sqrt{a} [/mm] nach a auf, und setze diesen Wert dann für a in die y-Kooridnate [mm] y=\ldots [/mm] ein. Das wird dann deine Ortskurve.

>  
> LG
>  Amicus          

Marius


Bezug
                
Bezug
Funktionsschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 So 27.11.2011
Autor: Amicus

Vielen Dank, hab's verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]