matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenFunktionsschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Funktionsschar
Funktionsschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Sa 03.01.2009
Autor: Dinker

Aufgabe
[Dateianhang nicht öffentlich]


Aufgabe 3c

f(x) = [mm] ae^{bx} [/mm]

f'(x) = [mm] abe^{bx} [/mm]

Bedingung 1  Gerade x =3 unter 30° geschnitten

tan 60° = [mm] abe^{3b} [/mm]

Bedingung 2: Schneidet y = 3 unter 45°

[mm] ae^{bx} [/mm] = 3
[mm] abe^{bx} [/mm] = tan 45°

Also hab folgende Drei Gleichungen:

[mm] ae^{bx} [/mm] = 3
[mm] abe^{bx} [/mm] = 1
tan 60° = [mm] abe^{3b} [/mm]

Ist das soweit alles falsch?

Gruss DInker


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.









Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Sa 03.01.2009
Autor: moody


> Ist das soweit alles falsch?

Im Prinzip isses so.

Ich glaube du hast die Aufgabe falsch verstanden.

Erklär mir mal bitte wie du auf [mm]tan 60° = ae^{xb}[/mm] kommst.

Es gibt den Graphen der Funktionsschar [mm] ae^{xb} [/mm] und der schneidet nun die Gerade x = 3 in einem bestimmten Winkel.

Sprich x = 3 ist eine eigenständige Gerade und heißt nicht, dass du für x 3 einsetzen musst in der Funktion.

lg moody

Bezug
                
Bezug
Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Sa 03.01.2009
Autor: Dinker

sind wir uns einig dass die 60° stimmen?

Warum darf ich nicht x = 3 einsetzen? Dort ist definitiv der Schnittpunkt

Bezug
                        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Sa 03.01.2009
Autor: Steffi21

Hallo,

mit [mm] 60^{0} [/mm] liegst du richtig, die Gerade x=3 wir unter einem Winkel von [mm] 30^{0} [/mm] geschnitten, somit beträgt der Anstieg an der Stelle x=3  [mm] \wurzel{3}, [/mm] kommt von [mm] tan60^{0}=\wurzel{3}, [/mm] damit haben wir die 1. Gleichung

(1)
[mm] f'(3)=\wurzel{3} [/mm]

[mm] a*b*e^{3b}=\wurzel{3} [/mm]

jetzt gibt es eine Stelle [mm] x_0, [/mm] an der sich die Funktion und die Gerade y=3 unter einem Winkel von [mm] 45^{0} [/mm] schneiden, der Anstieg der Tangente beträgt 1, kommt von  [mm] tan45^{0}=1, [/mm] damit haben wir die 2. Gleichung

(2)
[mm] f'(x_0)=1 [/mm]

[mm] a*b*e^{x_0*b}=1 [/mm]

weiterhin ist bekannt, somit die 3. Gleichung

(3)
[mm] f(x_0)=3 [/mm]

[mm] a*e^{x_0*b}=2 [/mm]

jetzt hast du ein Gleichungssystem

(1) [mm] a*b*e^{3b}=\wurzel{3} [/mm]

(2) [mm] a*b*e^{x_0*b}=1 [/mm]

(3) [mm] a*e^{x_0*b}=3 [/mm]

jetzt lautet das Ziel, diese Gleichungssystem zu lösen, als Einstieg schlage ich dir vor, aus den Gleichungen (2) und (3) die Variable b zu bestimmen,

[Dateianhang nicht öffentlich]

Steffi




Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Sa 03.01.2009
Autor: Dinker

Besten Dank Steffi, leider hatte ich den letzten Satz nicht gesehen und es anders versucht....


(1) a = [mm] \bruch{\wurzel{3}}{b * e^{3b} } [/mm]

(2) 1 = [mm] \bruch{\wurzel{3}e^{x_{0}b}}{e^{3b}} [/mm]

(3) 3 = [mm] \bruch{\wurzel{3} e^{x_{0}b}}{be^{3b}} [/mm]

(2)  1 = [mm] \wurzel{3} e^{_{0}b -3b} [/mm]

(3) 3b = [mm] \wurzel{3} e^{_{0}b -3b} [/mm]

3b = 1
b = [mm] \bruch{1}{3} [/mm]

a = [mm] \bruch{\wurzel{3}}{\bruch{1}{3}e^{1}} [/mm]

a = 3 [mm] \wurzel{3} e^{-1} [/mm]
= 1.91

Kann mir jemand den Fehler sagen?

Besten Dank

Bezug
                                        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Sa 03.01.2009
Autor: Steffi21

Hallo, warum soll [mm] a=\bruch{3\wurzel{3}}{e} [/mm] und [mm] b=\bruch{1}{3} [/mm] falsch sein? korrekt!! damit habe ich auch die Funktion gezeichnet, Steffi

Bezug
                        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Sa 03.01.2009
Autor: abakus


> sind wir uns einig dass die 60° stimmen?

Das ist nur die halbe Wahrheit. Es könnten auch -60° sein.
Gruß Abakus




>  
> Warum darf ich nicht x = 3 einsetzen? Dort ist definitiv
> der Schnittpunkt


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]