matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFunktionsschaar und Fläche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Funktionsschaar und Fläche
Funktionsschaar und Fläche < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsschaar und Fläche: Lösung
Status: (Frage) beantwortet Status 
Datum: 21:15 Mi 21.11.2007
Autor: fritte

Aufgabe
Für welchen Wert von a berührt der Graph zu f(x)= [mm] 1/4x^3-2x^2+1/4*ax [/mm] die x-Achse? Welchen Inhalt hat die Fläche zwischen dem Graph und der x-Achse?

Hallo zusammen,
ich schreiben morgen ein Klausur und hab beim Vorbereiten darauf eine Aufgabe gefunden, die ich nicht lösen kann.

Bitte um Hilfe.

Danke im vorraus.


        
Bezug
Funktionsschaar und Fläche: fehler in der aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:21 Mi 21.11.2007
Autor: fritte

Die Funktion lautet

f(x)= 1/4 [mm] x^3 [/mm] - [mm] 2x^2 [/mm] +1/4*ax

Bezug
                
Bezug
Funktionsschaar und Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mi 21.11.2007
Autor: Waschi

Hallo,

wenn du f(x)=0 setzt, kannst du ein x ausklammern und und siehst, das eine Nullstelle bei x=0 liegt.
Jetzt hast du eine Quadratische Funktion, die du mit der pq-Formel lösen kannst.
Damit du aber kein ergebnis dabei herausbekommst, musst du dir anschauen für welche a die Diskriminante =0 ist.
Ich habe dort a>16 heraus.

Hier siehst du auch nochmal den Graphen für a=16

[Dateianhang nicht öffentlich]

Viele Grüße

Waschi

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
        
Bezug
Funktionsschaar und Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 21.11.2007
Autor: Steffi21

Hallo,

a=0, es gilt bei Berührung der x-Achse:
1) an der Stelle [mm] x_0 [/mm] liegt ein Maximum oder Minimum vor, also 1. Ableitung gleich Null,  UND
2) [mm] f(x_0)=0 [/mm]

somit
[mm] f(x)=\bruch{1}{4}x^{3}-2x^{2} [/mm]

[mm] f'(x)=\bruch{3}{4}x^{2}-4x [/mm]

f'(0)=0 an der Stelle [mm] x_0=0 [/mm] liegt ein Extremwert (Maximum) vor,

und
[mm] f(x_0)=f(0)=0 [/mm]

beide Bedingungen sind erfüllt

die Fläche sollte jetzt kein Problem mehr sein, über die Nullstellen bekommst du die Integrationsgrenzen,

Steffi

Bezug
                
Bezug
Funktionsschaar und Fläche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:11 Mi 21.11.2007
Autor: Waschi

Die Aufgabenstellung ist vielleicht etwas irreführend. War die Aufgabe wirklich so gestellt?
Bei mir, hast du nur einen Schnittpunkt mit der x-Achse und das Integral wäre unendlich.
Für a=16 könntest du in meinem Fall auch ein Konkretes Integral berechnen.
Bei Steffi hast du einen Schnittpunkt und einen Berührungspunkt und kannst ebenfalls ein Integral berechnen.
Ist halt nur die Frage was hier verlangt war?


Bezug
                        
Bezug
Funktionsschaar und Fläche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:26 Mi 21.11.2007
Autor: Steffi21

Hallo,

es gibt laut Aufgabestellung 2 Funktionen, rote und grüne, bei der roten sind die Grenzen 0 und 4, somit [mm] 5\bruch{1}{3}FE, [/mm] bei der grünen sind die Grenzen 0 und 8, somit [mm] 85\bruch{1}{3}FE, [/mm]

[Dateianhang nicht öffentlich]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]