matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenFunktionschar; brauche Hilfe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Funktionschar; brauche Hilfe
Funktionschar; brauche Hilfe < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionschar; brauche Hilfe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 So 19.02.2006
Autor: arab

Aufgabe
[mm] F_{a}(x) [/mm] = 10x e^-ax² (= Soll "e hoch -ax²" bedeuten)

a)
Ermitteln sie den größtmöglichen Definitionsbereich der Funktionschar [mm] F_{a}, [/mm] sowie die Schnittpunkte der Funktionschar [mm] F_{a} [/mm] mit den Koordinatenachsen.

b)
Untersuchen sie die Graphen der [mm] F_{a} [/mm] auf Symetrie und Asymptoten.

c)
Ermitteln sie die Extrem- und Wendepunkte von [mm] F_{a}. [/mm]

d)
Zeigen sie dass [mm] F_{a}(x) [/mm] = - [mm] \bruch{5}{a} [/mm] e^-ax² eine Stammfunktion von [mm] F_{a} [/mm] ist.

Hallo zusammen

Wir haben das Thema vor kurzem aufgegriffen und ich muss ehrlich sagen, dass ich einfach nicht weiß, wie ich bei einer solchen Aufgabe beginnen soll. (Probleme beim Erstellen von Ableitungen, einer "e-Funktion")

Wäre echt genial, wenn mir jemand als Hilfe einige Lösungsansätze (Am liebsten natürlich eine Musterlösung ;-)) geben und erklären könnte, damit ich die Aufgabe als Hilfestellung für weitere verwenden kann.

Vielen Dank im Voraus

Gruß

Arab


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionschar; brauche Hilfe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 So 19.02.2006
Autor: Pi3141

Ich gebe dir jetzt eine Lösungsansätze:

a) Bei der Suche nach dem Definitionsbereich, musst du schauen, was du einsetzten darfst. Bei e-Funktionen sind das immer alle Zahlen, also ist hier der Definitionsbereich [mm] \IR. [/mm]
Beim Definitionsbereich musst du prinzipiell nur aufpassen, dass keine Nenner 0 werden (hier einfach, da es keine Nenner gibt) und dass unter Wurzeln und Logarithmen nichts negatives steht. e-Funktionen sind, wie schon erwähnt unkritisch.

Bei dem Schnitt mit den Koordinatenachsen schaust du zuerst, wo trifft die Funktion die y-Achse, d.h. was passiert bei x=0. (Hier: 0) Danach schaust du nach Schnittpunkten mit der x-Achse, also wo x=0 ist. Du setzt dabei [mm] f_a(x)=0 [/mm] und schust nach Lösungen. Du weisst, dass die e-Funktion nicht 0 werden kann, deshalb müssen bei diesem Produkt die 10x 0 ergeben, was natürlich nur bei x=0 erfüllt ist.

b) Bei den Symetrien setzt du -x in f ein und schaust, ob wieder f(x) => Achsensymetrisch oder -f(x)=> Punktsymetrisch herauskommt. Sollte weder noch herauskommen, hat die Funktion keine einfache Symetrie. Diese Funktion ist Punktsymetrisch, wie du leicht nachrechnen kannst.

Bei Asymptoten musst du nachschauen, wohin die Funktion geht, wenn x ins Unendliche geht. Betrachte hierzu die Funktion wieder als Produkt zwischen 10x und [mm] e^{-ax^2}. [/mm] Wenn x gegen [mm] +\infty [/mm] geht, geht 10x auch gegen [mm] \infty, [/mm] aber die e-Funktion nimmt schneller ab, deshalb geht die Funktion gegen 0.
Wenn x gegen [mm] -\infty [/mm] geht, geht der e-Teil wieder gegen 0, wegen dfem [mm] x^2, [/mm] der 10x-Teil gegen [mm] -\infty. [/mm] Das e fällt wieder schneller und die Funktion geht wieder gegen 0.
[mm] \limes_{x\rightarrow\pm\infty}f_{a}(x)=0 [/mm]

C) Extrem- und Wendepunkte:
Hier bildest du die Ableitung und setzt sie 0. Bei dieser Aufgabe brauchst du Ketten- und Produktregel. Bei e-Funktionen musst du bei der Produktregel immer nur die Ableitung von dem Zeug, das oben beim e steht mit der ursprünglichen e-Funktion multiplizieren. Ich heb die innere Ableitung mal zwischen die grün-Tags gesetzt.
f(x)=10x [mm] e^{-ax^2} [/mm]
[mm] f_{a}'(x)=10*e^{-ax^2}+10x*[green](-a*2x)[/green]*e^{-ax^2} [/mm]
Am Besten du vereinfachst das noch zu [mm] f_{a}'(x)=(10-20ax^2)e^{-ax^2}. [/mm]
Zum Nullsetzten einfach wieder den e-Teil vernachlässigen (der wird ja nie Null) und nur [mm] 10-20ax^2 [/mm] Null setzten. Das ergibt dann [mm] \pm \bruch{\wurzel{2a}}{2a}. [/mm] Das musst du jetzt nur noch in die Ausgangsfunktion einsetzten und dann hast du die Koordinaten. Um herauszufinden, ob es ein Hoch- oder ein Tiefpunkt ist, verwendest du beim Hochpunkt rechts am besten den Vorzeichenwechsel und am Tiefpunkt links sagst du, dass der Graf punbktsymetrisch ist, und deshalb im Negativen ein Tiefpunkt existiert.

Analog gehen die Wendepunkte.

d)
Die Funktion, die du hier hast, musst du nur ableiten. Wenn es sich um eine Stammfunktion handelt, kommt bei der Ableitung deine ursprüngliche Funktion heraus.

Hoffe du das alles verstanden. Wünsche dir dann noch viel Glück bei der Abi-Vorbereitung (worum es hier ja sicherlich geht).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]