matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenFunktionsbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Steckbriefaufgaben" - Funktionsbestimmung
Funktionsbestimmung < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsbestimmung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:26 Mi 19.04.2006
Autor: Amy1988

Aufgabe
Bestimmen Sie eine ganzrationale Funktion vom Grad 5, deren Graph symmetrisch zu Ursprung ist und in P(-1;1) eine Wendetangente mit der Steigung 3 hat.

Hallo ihr Lieben,

ich habe mich eben an dieser Aufagbe versucht, komme aber jetzt irgendwie nicht weiter...
Meine Ansätze bisher:

f(x) = [mm] ax^5 [/mm] + [mm] bx^4 [/mm] + [mm] cx^3 [/mm] + [mm] dx^2 [/mm] + ex + f

1) Symmetrie => f(x) = [mm] ax^5 [/mm] + [mm] cx^3 [/mm] + ex + f
                           f´(x) = [mm] 5ax^4 [/mm] + [mm] 3cx^2 [/mm] + e
                           f´´(x) = [mm] 20ax^3 [/mm] + 6cx

2) P(-1;1) => -a - c - e + f = 1

3) Wendepunkt P(-1;1) => f´´(-1) = 0 => -20a - 6c = 0

4) Steigung der Tangente ist 3 => f´(-1) = 3 => -5a - 3c + e = 3

So...ich hoffe mal, dass das soweit richtig ist?!
Mir fehlt jetzt aber noch eine Bedingung, um die Aufgabe eindeutig lösen zu können (, oder ?)
Kann mir vielleicht jemand helfen?

Danke euch schon mal
AMY

        
Bezug
Funktionsbestimmung: fast fertig
Status: (Antwort) fertig Status 
Datum: 12:40 Mi 19.04.2006
Autor: statler

Hallo Amy!

> Bestimmen Sie eine ganzrationale Funktion vom Grad 5, deren
> Graph symmetrisch zu Ursprung ist und in P(-1;1) eine
> Wendetangente mit der Steigung 3 hat.
>  Hallo ihr Lieben,
>  
> ich habe mich eben an dieser Aufagbe versucht, komme aber
> jetzt irgendwie nicht weiter...
>  Meine Ansätze bisher:
>  
> f(x) = [mm]ax^5[/mm] + [mm]bx^4[/mm] + [mm]cx^3[/mm] + [mm]dx^2[/mm] + ex + f
>  
> 1) Symmetrie => f(x) = [mm]ax^5[/mm] + [mm]cx^3[/mm] + ex + f

f ist auch gleich 0, z. B. weil f = [mm] f*x^{0} [/mm] ist, also eine gerade Potenz von x.

>                             f´(x) = [mm]5ax^4[/mm] + [mm]3cx^2[/mm] + e
>                             f´´(x) = [mm]20ax^3[/mm] + 6cx
>  
> 2) P(-1;1) => -a - c - e + f = 1
>  
> 3) Wendepunkt P(-1;1) => f´´(-1) = 0 => -20a - 6c = 0
>  
> 4) Steigung der Tangente ist 3 => f´(-1) = 3 => -5a - 3c +
> e = 3
>  
> So...ich hoffe mal, dass das soweit richtig ist?!

Das hoffe ich jetzt auch...

>  Mir fehlt jetzt aber noch eine Bedingung, um die Aufgabe
> eindeutig lösen zu können (, oder ?)

Nein, jetzt nicht mehr

>  Kann mir vielleicht jemand helfen?

Ja, denke ich mal

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Funktionsbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 Mi 19.04.2006
Autor: Amy1988

Hey Dieter!!!

Vielen, vielen Dank...
Da hatt eich irgendwie ein Blackout oder so...aber du hast natürlich Recht =)

Bis bald Amy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]