matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenFunktionsabstand
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Funktionsabstand
Funktionsabstand < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsabstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 So 04.01.2009
Autor: FlECHS

Aufgabe
Für jedes t>0 ist eine Funktion [mm] $f_t(x)=(\bruch{x}{t}+1)*e^{t-x}$, x\in\IR. [/mm]

Die Schaubilder von [mm] f_t [/mm] und [mm] f_t' [/mm] schneiden aus der Geraden x=1 eine Strecke aus. Für welchen Wert von t ist die Länge dieser Strecke am kleinsten?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

[mm] $f_t(x)=(\bruch{x}{t}+1)*e^{t-x}$ [/mm]

Erst einmal die erste Ableitung gebildet

[mm] $f'_t(x)=(\bruch{1}{t}-(\bruch{x}{t}+1))*e^{t-x}$ [/mm]

Dann hab ich mir gedacht x=1 also [mm] f_t(1) [/mm] und f'_t(1)

[mm] $f_t(x)=(\bruch{1}{t}+1)*e^{t-1}$ [/mm]

[mm] $f'_t(x)=(\bruch{1}{t}-(\bruch{1}{t}+1))*e^{t-1}$ [/mm]

Nun hab ich jedoch keinen Ansatz wie ich weiter vorgehen soll, sollte ich die beiden funktionen [mm] f_t(1) [/mm] und [mm] f_t'(1) [/mm] gleichsetzen?

Ich wäre sehr erfreut darüber wenn mir jemand weiterhelfen könnte.

        
Bezug
Funktionsabstand: Abstandsfunktion = Differenz
Status: (Antwort) fertig Status 
Datum: 00:16 So 04.01.2009
Autor: Loddar

Hallo FlECHS!


Der gesuchte Abstand bzw. die entsprechende Abstandsfunktion $d(t)_$ wird nun gebildet durch die Differenz von [mm] $f_t(1)$ [/mm] und [mm] $f_t'(1)$ [/mm] :
$$d(t) \ = \ [mm] f_t(1)-f_t'(1) [/mm] \ = \ ...$$
Für diese Differenzfunktion $d(t)_$ nun eine Extremwertberechnung durchführen (also Nullstellen der 1. Ableitung etc.).


Gruß
Loddar


Bezug
                
Bezug
Funktionsabstand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:47 So 04.01.2009
Autor: FlECHS

Ok dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]