matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFunktions Probleme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Funktions Probleme
Funktions Probleme < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktions Probleme: Relationen und Funktionen
Status: (Frage) beantwortet Status 
Datum: 13:56 Do 07.07.2005
Autor: papi84

Hallo :)
ich habe ein bisschen Schwierigkeiten mit einer nicht so komplizierten Aufgabe, aber ich weiss nicht wie soll ich beginnen und was soll ich machen...sooo ich muss pruefen ob die folgende Relationen Funktionen sind:
F ={ (0,1), (0,2), (0,3), (0,4) }
F= { (x,y)  [mm] \in N^{2} [/mm] | 2y=x-1 }

bitte hilfe! konnen sie mir ein algorithmus sagen um solche Aufgaben zu lösen???


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktions Probleme: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Do 07.07.2005
Autor: Hanno

Hallo Papi84.

Sei eine Relation [mm] $R\subseteq M\times [/mm] N$ gegeben, wobei $M$ und $N$ Mengen. Betrachten wir nun die Mengen [mm] $S_{m,1}:=\{n\in N\vert (m,n)\in R\}$ [/mm] und [mm] $S_{n,2}:=\{m\in M\vert (m,n)\in R\}$ [/mm] mit [mm] $m\in [/mm] M, [mm] n\in [/mm] N$. Ist [mm] $\vert S_{m,1}\vert=1$ [/mm] für alle [mm] $m\in [/mm] M$, so induziert $R$ eine Abbildung [mm] $f:M\to [/mm] N$ mit $f(m)=n$, wobei $n$ das einzige Elemente aus [mm] $S_{m,1}$ [/mm] ist. Analog läuft es für [mm] $S_{n,2}$: [/mm] ist [mm] $\vert S_{2,n}\vert [/mm] = 1$ für alle [mm] $n\in [/mm] M$, so induziert $R$ eine Abbildung [mm] $f:N\to [/mm] M$, wobei $f(n)=m$ mit [mm] $m\in S_{n,2}$ [/mm] als einziges Element aus [mm] $S_{n,2}$. [/mm]

Nun musst du prüfen, ob und wenn ja, welche der Mengen [mm] $S_{m,1},S_{n,2}$ [/mm] für alle [mm] $m\in [/mm] M$ bzw. [mm] $n\in [/mm] N$ genau ein Element beinhalten. Ich mache dies einmal am Beispiel der ersten gegebenen Relation vor:

Ich nehme, damit die Aufgabe ein wenig Klärung schafft an, dass [mm] $R\subseteq \{0,1,2,3,4\}\to\{1,2,3,4\}$ [/mm] gilt, d.h. [mm] $M=\{0\}$ [/mm] und [mm] $N=\{1,2,3,4\}$ [/mm] [in der Aufgabenstellung wurde keine genauere Angabe über die Relation $R$ gemacht].

Wir haben [mm] $M_{0,1}=\{1,2,3,4\}$, [/mm] d.h. insbesondere [mm] $\vert M_{m,1}\vert\not= [/mm] 1$ für wenigstens ein [mm] $m\in [/mm] M$. Betrachten wir allerdings die Mengen [mm] $M_{n,2}$ [/mm] für [mm] $n\in [/mm] N$, so stellen wir fest, dass [mm] $\vert M_{n,2}\vert [/mm] = 1$ für alle [mm] $n\in [/mm] N$. Wir erhalten so eine Abbildung [mm] $f:\{1,2,3,4\}\to\{0\}$ [/mm] mit $f(1)=f(2)=f(3)=f(4)=0$. Bedenke, dass die Relation $R$ für [mm] $N=\{0,1,2,3,4\}$ [/mm] keine Abbildung [mm] $f:N\to [/mm] M$ induziert, da das Bild von $0$ in $f$ fehlte.


Ich hoffe ich konnte dir ein wenig helfen.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Funktions Probleme: ???
Status: (Frage) beantwortet Status 
Datum: 10:22 Fr 08.07.2005
Autor: papi84

vielen Dank fur die ausführliche Erklärung aber es ist mir ein bisschen schwer mit die Abbildung Sache zu arbeiten. gibt es nicht ein trivialleres Algorithmus , weil ehrlich zu sein .....ich habe deins nicht verstanden :(

Bezug
                        
Bezug
Funktions Probleme: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Fr 08.07.2005
Autor: logarithmus

Hallo papi84,

wenn die vorige Antwort zu kompliziert ist, gehen wir etwas anderes vor.
Dazu betrachten wir das erste Beispiel:
F={(0,1), (0,2), (0,3), (0,4)}, und schreiben wir das als
[mm] F=\{(x,f(x))| x\in D=\{0\} \ und \ f(x)\in W=\{1,2,3,4\}\}, [/mm] D:=Definitionsbereich, W:=Wertebereich.
Damit die Relation (Abbildung) [mm] F:D\in [/mm] W auch eine Funktion definiert, muss jedes [mm] x\in [/mm] D auf maximal ein [mm] f(x)\in [/mm] W abgebildet werden, sonst ist die Relation keine Funktion. Hier wird 0 auf 1, auf 2, ... abgebildet. Also ist F keine Funktion.

Das andere Beispiel schaffst jetzt allein, oder?

gruss,
logarithmus


Bezug
                                
Bezug
Funktions Probleme: richtig?
Status: (Frage) beantwortet Status 
Datum: 22:12 Fr 08.07.2005
Autor: papi84

Hallo,
soofern ich verstanden habe....
F={ (x,y)  [mm] \in N^{2} [/mm] | 2y=x+1 }

=> x=2y+1 => x hat für jede Wert eine bestimmte Abbildung - 2y+1 und => das ist eine Funktion....ist das richtig?

Bezug
                                        
Bezug
Funktions Probleme: Fast ...
Status: (Antwort) fertig Status 
Datum: 22:27 Fr 08.07.2005
Autor: Loddar

Hallo Papi84!


>  [mm] $F=\{ (x,y) \in \IN^{2} | 2y=x+1 \}$ [/mm]
>  
> => x=2y+1 => x hat für jede Wert eine bestimmte Abbildung -
> 2y+1 und => das ist eine Funktion....ist das richtig?

Der Schluß ist richtig [ok] : es handelt sich um eine Funktion !!


Aber die Funktionsvorschrift (= Abbildungsvorschrift) lautet hier:

$x \ [mm] \mapsto [/mm] \ y \ = \ [mm] \bruch{x+1}{2}$ [/mm]

Du mußt Deinen gegebenen Term $2y \ = \ x+1$ nämlich nach $y_$ umformen und erhältst damit diese Funktionsvorschrift.


Gruß
Loddar


Bezug
                                                
Bezug
Funktions Probleme: Super
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 Sa 09.07.2005
Autor: papi84

Alles ist mir jetzt klar ....ich danke an allen viel Mals :))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]