matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenFunktions-Bestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Steckbriefaufgaben" - Funktions-Bestimmung
Funktions-Bestimmung < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktions-Bestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 So 04.01.2009
Autor: rabilein1

Aufgabe
Eine Funktion der Form [mm] f(x)=a*x^{2}+b*x+c [/mm] hat ihren Extrempunkt bei S(3/5). Die Tangente, die durch T(7/9) geht, hat die Steigung 1.

Wie lautet die Funktion?

Da es drei Unbekannte gibt, muss man drei Gleichungen aufstellen, und dann das Gleichungssystem lösen.

1.) 5 = 9a + 3b +c   => das ergibt sich aus f(x) und S

2.) 0 = 6a + b   => das ergibt sich erster Ableitung und S


Schwierig wird es aber bezüglich der dritten Gleichung, die sich ja aus der Tangente ergeben muss.
Die Tangente, die durch T(7/9) geht, hat die Steigung 1. Daraus ergibt sich die Gleichung y=x+2

Der Punkt [mm] x_{T} [/mm] sei der Berührpunkt. Er liegt auf f(x) und da hat f(x) die Steigung 1. Das ergibt dann die beiden Gleichungen:

3.) [mm] x_{T} [/mm] + 2 = [mm] a*x_{T}^{2} [/mm] + [mm] b*x_{T} [/mm] + c

4.)  1 = [mm] 2a*x_{T} [/mm] + b

Nun hat man insgesamt 4 Gleichungen mit 4 Unbekannten. Das ist ja auch irgendwie lösbar; allerdings stört mich die Sache mit dem [mm] x_{T}^{2}. [/mm]

Kann man dieses "Quadrat" da irgendwie wegkriegen? Oder ist das wirklih so kompliziert?

        
Bezug
Funktions-Bestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 So 04.01.2009
Autor: ardik

Hallo rabilein1,

Korrektur: Ich habe zu einfach gedacht, was ich unten geschrieben habe stimmt nicht! Siehe auch meine spätere Mitteilung!

Du denkst gerade zu kompliziert! ;-)

Bedenke, dass T(7|9) ein Punkt des Graphen ist, aus

$f(7)=9$

ergibt sich also die dritte benötigte Gleichung.

Deine dritte und vierte Gleichung sind überflüssig.

Schöne Grüße
 ardik

Bezug
                
Bezug
Funktions-Bestimmung: nur Zufall ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:32 So 04.01.2009
Autor: rabilein1


> Bedenke, dass T(7|9) ein Punkt des Graphen ist, aus
>  
> [mm]f(7)=9[/mm]


Es wäre Zufall, wenn das ein Punkt des Graphen wäre !!!

Dann wäre die Angabe, dass die Steigung dort 1 ist, überflüssig.

Bezug
                        
Bezug
Funktions-Bestimmung: Du hast völlig recht!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:37 So 04.01.2009
Autor: ardik

Hallo rabilein1,

> Es wäre Zufall, wenn das ein Punkt des Graphen wäre !!!

Ja, Du hast völlig recht, ich habe oberflächlich gelesen, ich hatte es gelesen wie „Tangente an T(7|9)“ ...

Schöne Grüße
 ardik

Bezug
        
Bezug
Funktions-Bestimmung: keine Lösung !
Status: (Antwort) fertig Status 
Datum: 12:38 So 04.01.2009
Autor: Al-Chwarizmi

Hallo rabilein,

ich habe mir rasch eine Skizze gemacht und
dabei festgestellt, dass die Gerade durch T
mit der Steigung 1 auch durch den Punkt S
geht. Eine Parabel mit den gewünschten
Eigenschaften wird es also gar nicht geben.


lieben Gruß    Al    

Bezug
                
Bezug
Funktions-Bestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:47 So 04.01.2009
Autor: rabilein1


>  ... und dabei festgestellt, dass die Gerade durch T
>  mit der Steigung 1 auch durch den Punkt S geht

Die Wahrscheinlichkeit, dass genau das zufällig passiert ist extrem klein.

Wenn ich genau so viel Glück im Lotto hätte, wäre ich schon reich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]