matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesFunktionentheorie, inverse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Funktionentheorie, inverse
Funktionentheorie, inverse < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionentheorie, inverse: frage zu beweis
Status: (Frage) beantwortet Status 
Datum: 15:08 Mo 20.03.2006
Autor: ilse

hallo,

ich habe hier einen beweis den ich nicht wirklich verstehe, wäre schön wenn mir jemand auf die sprünge helfen könnte.

w=f(z) holomorph in G, [mm] w_{0} [/mm] = [mm] f(z_{0}); f'(z_{0}) \not=0 [/mm]

Beh: f(z) lokal umkehrbar in einer Umgebung um [mm] z_{0}, [/mm] wobei die umkehrfunktion dort holomorph ist.

Beweis: f(z)=u(x,y)+iv(x,y)

Die Abbildung u=u(x,y), v=v(x,y) ist lokal in [mm] (x_{0}, y_{0}) [/mm] auflösbar, da    [mm] \bruch{\partial(u,v)}{\partial(x,y)} \not=0 [/mm]
[mm] \Rightarrow [/mm] x=x(u,v); y=y(u,v) und [mm] x_{u}= \bruch{v_{y}}{D}; y_{u}= \bruch{-v_{x}}{D}; x_{v}= \bruch{-u_{y}}{D}; y_{v}= \bruch{u_{x}}{D} [/mm]
[mm] \Rightarrow [/mm] (Cauchy-Riemann) z=x(u,v
)+iy(u,v)
was ich jetzt nicht verstehe, warum kann man draus, das die jacobideterminante 0 ist schließen, dass man die funktionen auflösen kann,  und wie kommt man auf die partiellen ableitungen?

hoffentlich kann mir jemand helfen,
gruß christine

        
Bezug
Funktionentheorie, inverse: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Mo 20.03.2006
Autor: felixf

Hallo Christine!

> ich habe hier einen beweis den ich nicht wirklich verstehe,
> wäre schön wenn mir jemand auf die sprünge helfen könnte.
>  
> w=f(z) holomorph in G, [mm]w_{0}[/mm] = [mm]f(z_{0}); f'(z_{0}) \not=0[/mm]
>  
> Beh: f(z) lokal umkehrbar in einer Umgebung um [mm]z_{0},[/mm] wobei
> die umkehrfunktion dort holomorph ist.
>  
> Beweis: f(z)=u(x,y)+iv(x,y)
>  
> Die Abbildung u=u(x,y), v=v(x,y) ist lokal in [mm](x_{0}, y_{0})[/mm]
> auflösbar, da    [mm]\bruch{\partial(u,v)}{\partial(x,y)} \not=0[/mm]
> [mm]\Rightarrow[/mm] x=x(u,v); y=y(u,v) und [mm]x_{u}= \bruch{v_{y}}{D}; y_{u}= \bruch{-v_{x}}{D}; x_{v}= \bruch{-u_{y}}{D}; y_{v}= \bruch{u_{x}}{D}[/mm]
>  
>  [mm]\Rightarrow[/mm] (Cauchy-Riemann) z=x(u,v
>  )+iy(u,v)
>  was ich jetzt nicht verstehe, warum kann man draus, das
> die jacobideterminante 0 ist schließen, dass man die
> funktionen auflösen kann,  und wie kommt man auf die
> partiellen ableitungen?

Kennst du den Satz von der Lokalen Umkehrbarkeit? Mmeistens kommt der in der (reellen!) Analysis II oder III vor. Der beantwortet dir beide Fragen :-)

(Anschaulich ist die Situation wie im Eindimensionalen, also $f : [mm] \IR \to \IR$: [/mm] ist $f'(x) [mm] \neq [/mm] 0$, so ist $f$ um $x$ herum lokal umkehrbar, da $f$ in einer Umgebung um $x$ streng monoton ist, und die Formel fuer die Ableitung der Umkehrfunktion kennst du ja sicher auch. Im Mehrdimensionalen tritt anstelle der Ableitung halt die Jacobimatrix...)

LG Felix


Bezug
                
Bezug
Funktionentheorie, inverse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:24 Di 21.03.2006
Autor: ilse

ok, danke, ich glaube ich verstehs jetzt einigermaßen.

gruß christine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]