matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Funktionenscharen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Funktionenscharen
Funktionenscharen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenscharen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Sa 14.03.2009
Autor: Musentochter

Aufgabe
Von einer quadratischen Funktionenschar fq (x) mit Df = R sind der Scheitel (1/q) mit q [mm] \in\ [/mm] R \ {0} sowie der Punkt A (3/0) (A [mm] \in\ [/mm] fq (x)) gegeben.

a) Bestimme den Funktionsterm der Schar
b) Die Funktionenschar besitzt gemeinsame Punkte. Gib einen dieser Punkte an.
c) Bestimme die Nullstellen der Funktionenschar in Abhängigkeit vom Parameter q.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo Leute! Diese Aufgabe verstehe ich überhaupt nicht, das ist Hausaufgabe, allerdings haben wir noch nicht erklärt bekommen, was eine Funktionenschar eigentlich ist.
Vielen Dank schonmal für die Hilfe!

        
Bezug
Funktionenscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Sa 14.03.2009
Autor: abakus


> Von einer quadratischen Funktionenschar fq (x) mit Df = R
> sind der Scheitel (1/q) mit q [mm]\in\[/mm] R \ {0} sowie der Punkt
> A (3/0) (A [mm]\in\[/mm] fq (x)) gegeben.
>  
> a) Bestimme den Funktionsterm der Schar
> b) Die Funktionenschar besitzt gemeinsame Punkte. Gib einen
> dieser Punkte an.
>  c) Bestimme die Nullstellen der Funktionenschar in
> Abhängigkeit vom Parameter q.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
> Hallo Leute! Diese Aufgabe verstehe ich überhaupt nicht,
> das ist Hausaufgabe, allerdings haben wir noch nicht
> erklärt bekommen, was eine Funktionenschar eigentlich ist.
> Vielen Dank schonmal für die Hilfe!  

Hallo,
eine Funktionenschar sind unendlich viele Funktionen mit fast der gleichen Funktionsgleichung.
Ich gebe mal 2 Beispiele für lineare Funktionen:
1) Die Gleichung y=3x+n beschreibt unendlich viele Funktionen (eben eine ganze Schar von Funktionen). Wenn du für n eine 1 eine 5 oder eine 99 einsetzt, erhältst du die Funktionen y=3x+1 oder y=3x+5 oder y=3x+99.
Diese drei Funktionen (und alle anderen die du erhältst, wenn du für n andere Zahlen einsetzt) besitzen eine gemeinsame Eigenschaft (hier ist es der Anstieg 3)

2) Auch die Gleichung y=mx+4 beschreibt eine ganze Schar von Funktionen: alle linearen Funktionen mit beliebigen Anstiegen, aber dem gemeinsamen Achsenschnittpunkt (0|4).

In deiner Aufgabe sind die Bilder aller Funktionen Parabeln. Wähle dir einfach mal einige (mindestens drei) verschiedene Werte für q aus (z. B: q=1, q=2 und q=-1) und bestimme jeweils die Gleichung der Parabel, die durch A verläuft und (1|q) als Scheitelpinkt hat. Übrigens: wegen der Symmetrieeigenschaft von quadratischen Funktionen kennst du neben dem Punkt A sofort einen weiteren Punkt ...
Gruß Abakus



Bezug
                
Bezug
Funktionenscharen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Sa 14.03.2009
Autor: Musentochter

Aufgabe
Von einer quadratischen Funktionenschar fq (x) mit Df = R sind der Scheitel (1/q) mit q  R \ {0} sowie der Punkt A (3/0) (A  fq (x)) gegeben.

a) Bestimme den Funktionsterm der Schar
b) Die Funktionenschar besitzt gemeinsame Punkte. Gib einen dieser Punkte an.
c) Bestimme die Nullstellen der Funktionenschar in Abhängigkeit vom Parameter q.

Danke für die schnelle Antwort!

Das heißt, ich kann a) damit beantworten, indem ich drei verschiedene Gleichungen hinschreibe, weil es gar keine allgemeingültige Funktionsgleichung gibt? Aber hätte ich dann nicht unendlich viele Antworten?

Ich bin auch schon darauf gekommen, dass die zweite Nullstelle N bei (-1/0) liegt. Aber was heißt das jetzt für meine Aufgabe? Was bringt mir diese Nullstelle? Wie soll ich das jetzt alles ausrechnen? Und warum kann ich in b) nicht einfach einen meiner drei "auserwählten" Scheitelpunkte einsetzen? Oder muss ich zwei meiner Scheitelpunktsformeln gleichsetzen, z.b. die für q=1 und die für q=2, und dann nach x auflösen? c) verstehe ich überhaupt nicht, ich weiß doch, wo meine Nullstellen liegen! :-(

Bezug
                        
Bezug
Funktionenscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Sa 14.03.2009
Autor: Somebody


> Von einer quadratischen Funktionenschar fq (x) mit Df = R
> sind der Scheitel (1/q) mit q  R \ {0} sowie der Punkt A
> (3/0) (A  fq (x)) gegeben.
>
> a) Bestimme den Funktionsterm der Schar
> b) Die Funktionenschar besitzt gemeinsame Punkte. Gib einen
> dieser Punkte an.
> c) Bestimme die Nullstellen der Funktionenschar in
> Abhängigkeit vom Parameter q.
>
> Danke für die schnelle Antwort!
>  
> Das heißt, ich kann a) damit beantworten, indem ich drei
> verschiedene Gleichungen hinschreibe, weil es gar keine
> allgemeingültige Funktionsgleichung gibt? Aber hätte ich
> dann nicht unendlich viele Antworten?
>  
> Ich bin auch schon darauf gekommen, dass die zweite
> Nullstelle N bei (-1/0) liegt.

[ok]

> Aber was heißt das jetzt für
> meine Aufgabe? Was bringt mir diese Nullstelle? Wie soll
> ich das jetzt alles ausrechnen? Und warum kann ich in b)
> nicht einfach einen meiner drei "auserwählten"
> Scheitelpunkte einsetzen? Oder muss ich zwei meiner
> Scheitelpunktsformeln gleichsetzen, z.b. die für q=1 und
> die für q=2, und dann nach x auflösen?

Im Prinzip kannst Du alle Information, die Du über $f(x)$ (in Abhängigkeit von $q$) weisst, in den Ansatz [mm] $f(x)=ax^2+bx+c$ [/mm] einsetzen. Dies ergibt ein lineares Gleichungssystem für die Koeffizienten $a,b,c$. Löse dieses Gleichungssystem nach $a,b,c$ auf und behandle dabei $q$ wie eine gegebene konstante Zahl ("Parameter" des Gleichungssystems).

Am einfachsten geht's aber mit der Scheitelpunktsform der quadratischen Funktion $f(x)$: ist [mm] $S(x_S|y_S)$ [/mm] der Scheitelpunkt ihres Graphen, dann gilt [mm] $f(x)=a\cdot(x-x_S)^2+y_S$. [/mm]

Bei Deiner Aufgabe ist [mm] $x_S=1$ [/mm] und [mm] $y_S=q$ [/mm] und daher [mm] $f_q(x)=a\cdot(x-1)^2+q$. [/mm] Nun muss zusätzlich aber noch gelten, dass $A(3|0)$ auf dem Graphen von $f$ liegt. Mit anderen Worten, es muss $f(3)=0$ sein. Es muss somit gelten: [mm] $f(3)=a\cdot (3-1)^2+q=0$. [/mm] Daraus kannst Du $a$ als Funktion von $q$ erhalten. Einsetzen dieses Wertes für $a$ im Ansatz [mm] $f_q(x)=a\cdot (x-1)^2+q$ [/mm] liefert den gesuchten Term der Funktionenschar [mm] $f_q$. [/mm]

> c) verstehe ich
> überhaupt nicht, ich weiß doch, wo meine Nullstellen
> liegen! :-(

Die Nullstellen sind halt unabhängig von $q$. Schreibe diese beiden Nullstellen einfach als Antwort hin. Bem: Nachdem man b) gelöst hat, kann man eben auch die Gleichung [mm] $f_q(x)=0$, [/mm] in der noch der Parameter $q$ auftritt, nach $x$ auflösen. Es zeigt sich, dass, sofern [mm] $q\neq [/mm] 0$ ist, diese Nullstellengleichung immer dieselben zwei Lösungen [mm] $x_1=3$ [/mm] und [mm] $x_2=-1$ [/mm] hat.

Bezug
                                
Bezug
Funktionenscharen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:27 Mo 16.03.2009
Autor: Musentochter

Oh, da hab ich wohl zu kompliziert gedacht. Vielen Dank für die schnelle und wirklich gut erklärte Antwort!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]