matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungFunktionenscharen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Funktionenscharen
Funktionenscharen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenscharen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 19:12 Mi 29.08.2007
Autor: Gaspar

Aufgabe
Leider z. Zt kein Plan von folgender Aufgabe: Die Funktion ft gegeben durch ft (X) = 1x durch x -1. Der Graf von ft sei Kt. a)Die Gleichung der Tangente soll bestimmt werden an K1 im Punkt o (0/0. b) für welchen Wert von t hat Kt die erste Winkelhalbierende als Tangente? c) Zeigen Sie, dass sich K2 und K - 1/2 im Ursprung orthogonal schneiden.
So, das wärs. Vielen Dank schon mal. Heinz
PS. Ich würde ja gerne die Regel befolgen und eine eigene Idee einbringen. Aber da fällt mir nichts zu ein. Die Mathe-Lehrerin meint, wir sollen mal machen. Die anderen aus dem Kurs haben auch keine Peilung.

Welche Gleichung verbrigt sich hinter der Frage a? Wie kommt man zu dem winkelhalbierenden Wert und schließlich wo ist der Schnittpunkt?

Ich habe die Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionenscharen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 19:46 Mi 29.08.2007
Autor: EmilyTheStrange

Ich denke dass ich dir bei a helfen kann.

Die Tangente hat ja die Formel y=mx+n

Du hast ja schonmal x und y durch den Punkt (0/0) gegeben. Jetzt brauchst du erstmal den Ansteig m. Dazu machst du erstmal die 1. Ableitung mit der Quotientenregel die heißt: [mm] f'(x)=\bruch{u(x)*v'(x) - v(x)*u'(x)}{v(x)^2} [/mm]
dann komt folgendes raus : [mm] \bruch{1*x - (x-1)*1}{x^2} [/mm]

wenn du das auflöst kommt raus [mm] f'(x)=\bruch{1}{x^2} [/mm]

dann musst du nur noch in die Ableitung für x die 1 einsetzten und das Ergebniss ist adnn dein Anstieg.
Dann setzt du halt x,y und Ansteig ind die Gleichung y=mx+n ein und stellst nach n um, dann  setzt du als ergebniss in die Gleichung nur noch m und n ein und dann müsste es stimmen.

Hoffe ich konnte dir etwas helfen.
Gruß EmilyTheStrange

Bezug
                
Bezug
Funktionenscharen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 Mi 29.08.2007
Autor: EmilyTheStrange

Tut mir Leid. Also nochmal

du hast den Punkt (0,0) und die gleichung [mm] f(x)=\bruch{x}{x-1} [/mm]

du machst die 1. ableitung der gleichung um den anstieg zu berechnen
die 1ableitung bekommst du durch die quotientenregel raus
du erhälst [mm] f'(x)=\bruch{1}{x^2} [/mm]

in die setzt du für x=1 ein wegen dem K1 und das Ergebniss ist adnn dein Anstieg m.

dann  punkt und m in y=mx+n einsetzten, nach n umstellen um dieses auszurechen und ´dann m und n im ergebniss in die gleichung bringen (also z.b. y=2x+1)

soo hoffe das hilft

Bezug
                
Bezug
Funktionenscharen: Quotientenregel falsch
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 21:08 Mi 29.08.2007
Autor: Loddar

Hallo Emily!


Du hast leider die MBQuotientenregel falsch aufgestellt und angewandt.

[mm] $$\left(\bruch{u}{v}\right)' [/mm] \ = \ [mm] \bruch{u'*v-u*v'}{v^2}$$ [/mm]

Das bedeutet hier für [mm] $f_1(x) [/mm] \ = \ [mm] \bruch{x}{x-1}$ [/mm] :

[mm] $$f_1'(x) [/mm] \ = \ [mm] \bruch{1*(x-1)-x*1}{(x-1)^2} [/mm] \ = \ [mm] -\bruch{1}{(x-1)^2}$$ [/mm]

Gruß
Loddar


Bezug
        
Bezug
Funktionenscharen: Hinweise
Status: (Antwort) fertig Status 
Datum: 21:18 Mi 29.08.2007
Autor: Loddar

Hallo Gaspar,

[willkommenmr] !!


Wo ist denn eigentlich Dein Parameter $t_$ in der Funktionsvorschrift [mm] $f_t(x) [/mm] \ = \ [mm] \bruch{x}{x-1}$ [/mm] abgeblieben?


Für die Tangentengleichung kannst Du folgende Formel verwenden:
$$t(x) \ = \ [mm] f'(x_0)*(x-x_0)+f(x_0)$$ [/mm]
Dabei ist in Deinem Fall [mm] $x_0 [/mm] \ = \ 0$ sowie [mm] $y_0 [/mm] \ = \ [mm] f(x_0) [/mm] \ = \ f(0) \ = \ 0$.


Die Winkelhalbierende ist die Gerade $y \ = \ x$ ; d.h. sie geht durch den Ursprung und hat die Steigung $m \ = \ 1$ .


Für Aufgabe c.) ist der Schnittpunkt doch gegeben mit "im Ursprung". Dabei handelt es sich doch um den Punkt $O \ [mm] \left( \ 0 \ | \ 0 \ \right)$ [/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]