matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisFunktionenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Funktionenraum
Funktionenraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenraum: Definitionsfrage
Status: (Frage) beantwortet Status 
Datum: 15:09 Fr 07.12.2012
Autor: mikexx

Aufgabe
Hallo, was ist [mm] $C_0^{\infty}(\Omega)$? [/mm]

Gibts da auch eine Norm zu?

Da sind welce Funktionen drin?


Ich habe es nicht herausfinden können, leider.

        
Bezug
Funktionenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Fr 07.12.2012
Autor: Marcel

Hallo,

> Hallo, was ist [mm]C_0^{\infty}(\Omega)[/mm]?

ich kenne [mm] $C_0(\Omega):=\{f: \Omega \to \IR,\;\;f \text{ ist stetig und } : \forall \epsilon > 0: \{\omega \in \Omega: |f(\omega)| \ge \epsilon\} \text{ ist kompakt}\}$ [/mm]
als die Menge aller "im Unendlichen verschwindenen stetigen Funktionen".
Demnach sollte wohl [mm] $C_0^\infty(\Omega)$ [/mm] die Menge "aller auf
[mm] $\Omega$ [/mm] definierten, unendlich oft differenzierbaren Funktionen, die im
unendlichen verschwinden" sein:
[mm] $$C_0^\infty(\Omega)=\{f: \Omega \to \IR,\;\;f \text{ ist unendlich oft differenzierbar, und} : \forall \epsilon > 0: \{\omega \in \Omega: |f(\omega)| \ge \epsilon\} \text{ ist kompakt}\}$$ [/mm]

Beachte: Die Stetigkeit von [mm] $f\,$ [/mm] braucht in [mm] $C_0^\infty$ [/mm] nicht mehr erwähnt
werden, denn eine diff'bare Funktion ist insbesondere stetig.

> Gibts da auch eine Norm zu?

Na hör' mal: Solche Fragen kannst Du Dir auch selbst beantworten. Ist
vielleicht [mm] $C_0^\infty(\Omega)$ [/mm] ein Unterraum eines anderen normierten
Raums? Welche Funktionenräume kennst Du denn? [mm] $C(\Omega)$ [/mm] (die
Menge aller auf [mm] $\Omega$ [/mm] definierten und stetigen Funktionen)
ist doch ein Vektorraum. [mm] $C^b(\Omega)$ [/mm] (die Menge aller auf [mm] $\Omega$ [/mm]
definierten und beschränkten Funktionen) ist doch ein Unterraum
davon, also insbesondere auch ein Vektorraum, und mit der
Supremumsnorm versehen ist [mm] $C^b(\Omega)$ [/mm] doch ein normierter Raum.
  

> Da sind welce Funktionen drin?

Siehe oben - jedenfalls denke ich, dass das so stimmt.
  
Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]