matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFunktionenkörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Funktionenkörper
Funktionenkörper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenkörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 So 16.12.2007
Autor: Fry

Hallo,

habe neFragen:
Weiß jemand, ob der Funktionenkörper [mm] \IF_{2}(X) [/mm] algebraisch abgeschlossen ist ?

LG
Fry


        
Bezug
Funktionenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 09:16 Di 18.12.2007
Autor: felixf

Hallo Fry

> habe neFragen:
>  Weiß jemand, ob der Funktionenkörper [mm]\IF_{2}(X)[/mm]
> algebraisch abgeschlossen ist ?

Ist er nicht: das Polynom [mm] $T^2 [/mm] - X [mm] \in \IF_2(X)[T]$ [/mm] hat zum Beispiel keine Nullstelle in [mm] $\IF_2(X)$. [/mm]

(Hier koenntest du auch [mm] $\IF_2$ [/mm] gegen jeden anderen beliebigen Koerper austauschen.)

LG Felix


Bezug
                
Bezug
Funktionenkörper: Nullstelle
Status: (Frage) beantwortet Status 
Datum: 17:09 Di 18.12.2007
Autor: Schwager

Hallo Felix,

ich habe [mm] $X\in F_2(X)$ [/mm] als Nullstelle von [mm] $T^2-X\in \IF_2(X)[T]$. [/mm]

Viele Grüße
Schwager

Bezug
                        
Bezug
Funktionenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 06:54 Mi 19.12.2007
Autor: felixf

Hallo Schwager

> ich habe [mm]X\in F_2(X)[/mm] als Nullstelle von [mm]T^2-X\in \IF_2(X)[T][/mm].

Du behauptest also, dass [mm] $X^2 [/mm] - X = 0$ ist? In dem Fall wuerde der Polynomring [mm] $\IF_2[X]$ [/mm] ziemlich langweilig aussehen und hoechstens vier Elemente haben, was ich doch arg bezweifle...

LG Felix


Bezug
                                
Bezug
Funktionenkörper: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:33 Mi 19.12.2007
Autor: Schwager

Hallo Felix

ich fürchte, ich habe [mm] $X^2-X\in\IF_2[X]$ [/mm] mit dem induzierten Einsetzungshomomorphismus [mm] $\IF_2\to\IF_2$ [/mm] identifiziert, der ja gerade die Nullabbildung ist.
Eigentlich ein schönes Bsp. dafür, daß das mit dem endlichen Körper [mm] $\IF_2$ [/mm] schief geht :-)
Inzw. konnte ich zeigen, daß Dein Polynom tatsächlich keine Nullstelle in [mm] $\IF_2(X)$ [/mm] hat.

Danke auch von meiner Seite
Schwager

Bezug
                                        
Bezug
Funktionenkörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Mi 19.12.2007
Autor: Fry

Hallo,

kann ich das so machen:
T²-X = 0 => T² = X
und mit normalen Polynomen kann man diese Gleichung nicht lösen oder ?

LG
Christian

Bezug
                                                
Bezug
Funktionenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Mi 19.12.2007
Autor: felixf

Hallo

> kann ich das so machen:
>  T²-X = 0 => T² = X

>  und mit normalen Polynomen kann man diese Gleichung nicht
> lösen oder ?

Genau, und ebenso wenig mit rationalen Funktionen. Sieht man schnell wenn man $T = P/Q$ einsetzt mit $P, Q [mm] \in \IF_2[X]$ [/mm] und die Gleichung mit [mm] $Q^2$ [/mm] multipliziert, und dann auf beiden Seiten den Grad vergleicht (einmal ist er gerade, einmal ungerade).

LG Felix


Bezug
                                        
Bezug
Funktionenkörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mi 19.12.2007
Autor: wee


>  Inzw. konnte ich zeigen, daß Dein Polynom tatsächlich
> keine Nullstelle in [mm]\IF_2(X)[/mm] hat.

Und wie? Ich komme hier nämlich gerade nicht weiter.

lg

wee

Bezug
                                                
Bezug
Funktionenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Mi 19.12.2007
Autor: felixf

Hallo zusammen

> >  Inzw. konnte ich zeigen, daß Dein Polynom tatsächlich

> > keine Nullstelle in [mm]\IF_2(X)[/mm] hat.
>  
> Und wie? Ich komme hier nämlich gerade nicht weiter.

Es reicht zu zeigen, dass es irreduzibel ist. Und das folgt sofort mit dem Eisensteinkriterium (damit folgt die Irreduziblitaet in [mm] $\IF_2[X][T]$) [/mm] und dem Satz von Gauss (womit dann die Irreduziblitaet in [mm] $Quot(\IF_2[X])[T] [/mm] = [mm] \IF_2(X)[T]$ [/mm] folgt).

LG Felix


Bezug
                
Bezug
Funktionenkörper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:45 Mi 19.12.2007
Autor: Fry

Hi Felix.

Vielen Dank.Das hilft mir weiter.
Viele Grüße

Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]