matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionenfolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Funktionenfolge
Funktionenfolge < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 So 24.01.2010
Autor: valoo

Aufgabe
Untersuchen Sie, ob die Funktionenfolge [mm] f_{n}: [/mm] I [mm] \to \IR; f_{n}(x)=x^{n} [/mm] für
a) [mm] I_{1}=[0,1] [/mm]
b) [mm] I_{2}=[0,1) [/mm]
gleichmäßig gegen [mm] f(x)=\limes_{n\rightarrow\infty}f_{n}(x) [/mm] konvergiert.

c) Konvergiert die Funktionenreihe [mm] \summe_{n=1}^{\infty}f_{n} [/mm] für [mm] I_{2} [/mm]
(i) punktweise?
(ii) gleichmäßig?

Zu a) und b) würde ich nein sagen, aber bei b) bin ich mir nicht so sicher. Kann man argumentieren, dass man x wählen kann als [mm] x=1-\bruch{1}{n} [/mm] und dann ist [mm] |f(x)-f_{n}(x)|\not=0 [/mm]
Für glm. Konvergenz muss nämlich gelten: [mm] \limes_{n\rightarrow\infty}sup|f(x)-f_{n}(x)|=0 [/mm]
Konvergiert die Reihe für alle x laut Wurzelkriterium?
lim [mm] sup(\wurzel[n]{x^{n}})=x<1 [/mm] da [mm] x\in[0,1) [/mm]
[mm] n\to\infty [/mm]
Aber wie ist das mit gleichmäßiger Konvergenz bei der Reihe? Wie man das zeigt oder widerlegt, weiß ich nicht.

        
Bezug
Funktionenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 So 24.01.2010
Autor: rainerS

Hallo!

> Untersuchen Sie, ob die Funktionenfolge [mm]f_{n}:[/mm] I [mm]\to \IR; f_{n}(x)=x^{n}[/mm]
> für
>  a) [mm]I_{1}=[0,1][/mm]
>  b) [mm]I_{2}=[0,1)[/mm]
>  gleichmäßig gegen
> [mm]f(x)=\limes_{n\rightarrow\infty}f_{n}(x)[/mm] konvergiert.
>  
> c) Konvergiert die Funktionenreihe
> [mm]\summe_{n=1}^{\infty}f_{n}[/mm] für [mm]I_{2}[/mm]
>  (i) punktweise?
>  (ii) gleichmäßig?
>  Zu a) und b) würde ich nein sagen, aber bei b) bin ich
> mir nicht so sicher. Kann man argumentieren, dass man x
> wählen kann als [mm]x=1-\bruch{1}{n}[/mm] und dann ist
> [mm]|f(x)-f_{n}(x)|\not=0[/mm]

Nein.

>  Für glm. Konvergenz muss nämlich gelten:
> [mm]\limes_{n\rightarrow\infty}sup|f(x)-f_{n}(x)|=0[/mm]

Überlege dir doch erst einmal wie der punktweise Limes [mm]f(x)=\limes_{n\rightarrow\infty}f_{n}(x)[/mm] aussieht. Dann kannst du nämlich diese Bedingung mit dem Supremum leichter formulieren.


>  Konvergiert die Reihe für alle x laut Wurzelkriterium?
> lim [mm]sup(\wurzel[n]{x^{n}})=x<1[/mm] da [mm]x\in[0,1)[/mm]  [mm]n\to\infty[/mm]

Da steht der normale Limes ohne Supremum. Sonst ist das Argument richtig: die Reihe konvergiert auf jeden Fall punktweise auf $[0,1)$.

>  Aber wie ist das mit gleichmäßiger Konvergenz bei der
> Reihe? Wie man das zeigt oder widerlegt, weiß ich nicht.

Die Reihe konvergiert gleichmäßig, wenn die Folge der Partialsummen [mm] $s_k=\summe_{n=1}^{k}f_{n}$ [/mm] gleichmäßig konvergiert.  Wie sieht diese Folge aus?

Viele Grüße
   Rainer


Bezug
                
Bezug
Funktionenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mi 27.01.2010
Autor: valoo


> >  Aber wie ist das mit gleichmäßiger Konvergenz bei der

> > Reihe? Wie man das zeigt oder widerlegt, weiß ich nicht.
>
> Die Reihe konvergiert gleichmäßig, wenn die Folge der
> Partialsummen [mm]s_k=\summe_{n=1}^{k}f_{n}[/mm] gleichmäßig
> konvergiert.  Wie sieht diese Folge aus?

Die Folge der Partialsummen lässt sich auch als [mm] \bruch{x^{n-1}-x}{x-1} [/mm] darstellen (laut wolframalpha). Kann ich damit irgendwie zeigen, dass (bzw. widerlegen, dass) die Folge der Partialsummen eine Cauchyfolge bezüglich der Supremumsnorm ist?

Also [mm] ||\bruch{x^{n+1}-x^{m+1}}{x-1}||<\varepsilon [/mm]
[mm] \forall n,m\ge N_{0} [/mm]

Wenn das Teil nicht gleichmäßig konvergent ist, was ich vermute (ist doch hoffentlich so, oder???), dann müsste auch zu [mm] \varepsilon=1 [/mm] so ein [mm] N_{0} [/mm] existieren, sodass die Aussage wahr ist. Ich habe versucht, das zum Widerspruch zu führen, ich kriegs aber nicht hin.
Ist das Teil wohlmöglich doch gleichmäßig konvergent?


Bezug
                        
Bezug
Funktionenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mi 27.01.2010
Autor: rainerS

Hallo!

> > >  Aber wie ist das mit gleichmäßiger Konvergenz bei der

> > > Reihe? Wie man das zeigt oder widerlegt, weiß ich nicht.
> >
> > Die Reihe konvergiert gleichmäßig, wenn die Folge der
> > Partialsummen [mm]s_k=\summe_{n=1}^{k}f_{n}[/mm] gleichmäßig
> > konvergiert.  Wie sieht diese Folge aus?
>  
> Die Folge der Partialsummen lässt sich auch als
> [mm]\bruch{x^{n-1}-x}{x-1}[/mm] darstellen (laut wolframalpha).

Das ist doch eine endliche geometrische Summe, da braucht mensch kein Wolfram Alpha dafür.

>  Kann
> ich damit irgendwie zeigen, dass (bzw. widerlegen, dass)
> die Folge der Partialsummen eine Cauchyfolge bezüglich der
> Supremumsnorm ist?
>  
> Also [mm]||\bruch{x^{n+1}-x^{m+1}}{x-1}||<\varepsilon[/mm]
> [mm]\forall n,m\ge N_{0}[/mm]

Da $x=1$ eine Nullstelle des Polynoms im Zähler ist, kannst du den Burch durch Polynomdivision exakt teilen. Aber das ist überhaupt nicht nötig. O.B.d.A. sei $n>m$ und dann ist dieser Bruch gleich

[mm] s_n-s_m = \summe_{k=m+1}^{n} f_k(x) = x^{m} \summe_{k=1}^{n} x^n [/mm]

Nun schätze das für [mm] $0\le [/mm] x [mm] \le [/mm] 1$ ab.

> Wenn das Teil nicht gleichmäßig konvergent ist, was ich
> vermute (ist doch hoffentlich so, oder???), dann müsste
> auch zu [mm]\varepsilon=1[/mm] so ein [mm]N_{0}[/mm] existieren, sodass die
> Aussage wahr ist.

Keine Ahnung, was du damit sagen willst. Meinst du $x=1$?

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]