matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionenfolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Funktionenfolge
Funktionenfolge < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenfolge: Tipp?
Status: (Frage) beantwortet Status 
Datum: 13:02 Mo 26.05.2014
Autor: Sandra_161

Hallo zusammen,  
Ich sitze gerade an dieser Aufgabe und komme leider nicht weiter. Könnt Ihr mir beim Ansatz helfen?

Die Funktionenfolge lautet:

[mm] f_{n} [/mm] : [0,1] [mm] \to \IR [/mm] , [mm] x\to \bruch{n^\alpha *x}{1+(nx)^2} [/mm]  für [mm] n\in \IN [/mm] und [mm] \alpha \in \IR [/mm]


Mir ist klar, dass ich eine Fallunterscheidung nach [mm] \alpha [/mm] machen muss. Kann ich von [mm] \alpha [/mm] =2 ausgehen? Für [mm] \alpha [/mm] =2 habe ich nämlich raus,dass die Funktionenfolge gegen die Funktion 1/x  für x [mm] \in [/mm] (0,1]  und 0 für x=0 konvergiert.


Stimmt mein Ansatz so?

        
Bezug
Funktionenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mo 26.05.2014
Autor: fred97


> Hallo zusammen,  
> Ich sitze gerade an dieser Aufgabe und komme leider nicht
> weiter. Könnt Ihr mir beim Ansatz helfen?
>
> Die Funktionenfolge lautet:
>
> [mm]f_{n}[/mm] : [0,1] [mm]\to \IR[/mm] , [mm]x\to \bruch{n^\alpha *x}{1+(nx)^2}[/mm]
>  für [mm]n\in \IN[/mm] und [mm]\alpha \in \IR[/mm]
>  
>
> Mir ist klar, dass ich eine Fallunterscheidung nach [mm]\alpha[/mm]
> machen muss. Kann ich von [mm]\alpha[/mm] =2 ausgehen? Für [mm]\alpha[/mm]
> =2 habe ich nämlich raus,dass die Funktionenfolge gegen
> die Funktion 1/x  für x [mm]\in[/mm] (0,1]  und 0 für x=0
> konvergiert.
>
>
> Stimmt mein Ansatz so?  

Ja

Du solltest aber auch den Fall [mm] \alpha [/mm] <2 untersuchen.

FRED


Bezug
                
Bezug
Funktionenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 26.05.2014
Autor: Sandra_161

Genau an dieser Stelle ist mein Problem. Muss ich gleichzeitig für x und [mm] \alpha [/mm] eine Fallunterscheidung machen? Ansonsten wüsste ich nicht wogegen es konvergiert.

Bezug
                        
Bezug
Funktionenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 Do 29.05.2014
Autor: Lisa641

Hallo,

ich beschäftige mich mit derselben Aufgabe. Ich habe auch eine Fallunterscheidung nach [mm] \alpha [/mm] durchgeführt. Als ersten Fall habe ich [mm] \alpha [/mm] = 2 betrachtet. Doch was mache ich für [mm] \alpha [/mm] < 2 und >2? Wenn ich [mm] \alpha [/mm] <2 betrachte, ist die 1 noch mit drin. Muss ich diese separat betrachten wie [mm] 0<\alpha<2 [/mm] ??

Muss ich dann zusätzlich eine Fallunterscheidung für x durchführen? Ich hatte mir überlegt die Fälle x=1 und x=0 zu betrachten. Wäre das so richtig?

Danke :)

Bezug
                                
Bezug
Funktionenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Do 29.05.2014
Autor: hippias

[mm] $f_{n}(0)$ [/mm] konvergiert immer. Im uebrigen hat man [mm] $f_{n}(x)= n^{\alpha-2}\frac{x}{\frac{1}{n^{2}}+x^{2}}$, [/mm] in welcher Gestalt man die Konvergenz sehr schoen studieren kann. Die ganzen Fallunterscheidungen sind nuetzlich.

Bezug
                        
Bezug
Funktionenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Do 29.05.2014
Autor: leduart

Hallo
du willst doch wohl die punktweise  Konvergenz und oder die glm. Konvergenz zeigen.
mach erst die punktweise für alle x und den verschiedenen [mm] \alpha, [/mm] danach überlege die glm konvergenz.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]