matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionen mehr. Veränderliche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Funktionen mehr. Veränderliche
Funktionen mehr. Veränderliche < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen mehr. Veränderliche: "Korrektur"
Status: (Frage) beantwortet Status 
Datum: 20:23 Do 09.09.2010
Autor: mvs

Aufgabe
Die Funktionen [mm] f:\IR^{3}\to\IR^{2} [/mm] und [mm] g:\IR^{2}\to\IR [/mm] sind definiert durch
[mm] f(x,y,z):=\vektor{x^{2}-y^{2} \\ 2x+z^{2}} [/mm] und [mm] g(x,y):=(x+y)^{2}, [/mm]

Ferner seien die Funktionen [mm] F,G:\IR^{3}\to\IR [/mm] definiert durch
F:=g ° f und [mm] G(x,y,z):=F(x,3y^{2}-x,3z) [/mm]

a) Berechnen Sie F(1,1,1) und G(1,1,1)
b) Berechnen Sie F'(1,2,3) und G'(1,1,1) mit Hilfe der Kettenregel.

Hallo, ist jemand so nett und schaut mal, ob ich hier alles richtig gemacht habe?

a)

[mm] F(x,y,z)=(x^{2}-y^{2}+2x+z^{2})^{2} [/mm]
[mm] F(1,1,1)=(1^{2}-1^{2}+2*1+1^{2})^{2}=3^{2}=9 [/mm]

[mm] G(x,y,z)=F(x,3y^{2}-x,3z)=(x^{2}-(3y^{2}-x)^{2}+2x+(3z)^{2}) [/mm]
[mm] G(1,1,1)=(1^{2}-(3*1^{2}-1)^{2}+2*1+(3*1)^{2})=8 [/mm]

b)

[mm] F'(x,y,z)=(2*(x^{2}-y^{2}+2x+z^{2})*(2x+2),2*(x^{2}-y^{2}+2x+z^{2})*(-2y),2*(x^{2}-y^{2}+2x+z^{2})*2z) [/mm]
[mm] F'(1,2,3)=(2*(1^{2}-2^{2}+2*1+3^{2})*(2*1+2),2*(1^{2}-2^{2}+2*1+3^{2})*(-2*2),2*(1^{2}-2^{2}+2*1+3^{2})*2*3)=(64,-64,96) [/mm]

[mm] h(x,y,z)=(x,3y^{2}-x,3z) [/mm]

[mm] G'(x,y,z)=F'(h(x,y,z))*h'(x,y,z)=F'(h(x,y,z))*\pmat{ 1 & -1 & 0 \\ 0 & 6y & 0 \\ 0 & 0 & 3 } [/mm]
[mm] G'(1,1,1)=F'(1,2,3)*\pmat{ 1 & -1 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 }=(64,-64,96)*\pmat{ 1 & -1 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 }=(64,-448,288) [/mm]

Vielen Dank im voraus

gruß
Michael

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Funktionen mehr. Veränderliche: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Do 09.09.2010
Autor: reverend

Hallo Michael,

das ist komplett richtig!

edit: MathePower hat Recht. Das Quadrat habe ich auch übersehen. Es las sich sonst alles so gut... ;-)

Grüße
reverend



Bezug
                
Bezug
Funktionen mehr. Veränderliche: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 21:35 Do 09.09.2010
Autor: MathePower

Hallo reverend,

> Hallo Michael,
>  
> das ist komplett richtig!


Leider nicht, da

[mm] G(1,1,1)=(1^{2}-(3\cdot{}1^{2}-1)^{2}+2\cdot{}1+(3\cdot{}1)^{2})^{\red{2}}=8^{2}=64[/mm]


>  
> Grüße
>  reverend
>  
>  


Gruss
MathePower

Bezug
        
Bezug
Funktionen mehr. Veränderliche: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Do 09.09.2010
Autor: MathePower

Hallo mvs,

> Die Funktionen [mm]f:\IR^{3}\to\IR^{2}[/mm] und [mm]g:\IR^{2}\to\IR[/mm] sind
> definiert durch
>  [mm]f(x,y,z):=\vektor{x^{2}-y^{2} \\ 2x+z^{2}}[/mm] und
> [mm]g(x,y):=(x+y)^{2},[/mm]
>  
> Ferner seien die Funktionen [mm]F,G:\IR^{3}\to\IR[/mm] definiert
> durch
>  F:=g ° f und [mm]G(x,y,z):=F(x,3y^{2}-x,3z)[/mm]
>  
> a) Berechnen Sie F(1,1,1) und G(1,1,1)
>  b) Berechnen Sie F'(1,2,3) und G'(1,1,1) mit Hilfe der
> Kettenregel.
>  Hallo, ist jemand so nett und schaut mal, ob ich hier
> alles richtig gemacht habe?
>  
> a)
>  
> [mm]F(x,y,z)=(x^{2}-y^{2}+2x+z^{2})^{2}[/mm]
>  [mm]F(1,1,1)=(1^{2}-1^{2}+2*1+1^{2})^{2}=3^{2}=9[/mm]
>  
> [mm]G(x,y,z)=F(x,3y^{2}-x,3z)=(x^{2}-(3y^{2}-x)^{2}+2x+(3z)^{2})[/mm]
>  [mm]G(1,1,1)=(1^{2}-(3*1^{2}-1)^{2}+2*1+(3*1)^{2})=8[/mm]


Das stimmt nicht.

Vielmehr ist

[mm]G(1,1,1)=(1^{2}-(3*1^{2}-1)^{2}+2*1+(3*1)^{2})^{\red{2}}=8^{2}=64[/mm]


>  
> Vielen Dank im voraus
>  
> gruß
>  Michael
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Funktionen mehr. Veränderliche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:21 Fr 10.09.2010
Autor: mvs

ok, vielen dank, Flüchtigkeitsfehler meinerseits.

gruß
Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]